skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Award ID contains: 1459794

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract In extending volcanic arcs such as the Aegean, tectonic processes exert a significant control on magmatism. Spanning scales from 1 to 10s of km, volcanic vents, edifices, and eruptive centers follow the orientation of, and are located near, fault zones. Whether this tectonic control on magmatism results from individual faults/fractures weakening the crust or because regional stresses control magma input into the crust is debated. Here we investigate the scales of tectonic and magmatic interactions, specifically focusing on the role of local‐scale (<10 km) faults/fractures in controlling magmatism. We infer local‐scale fault/fracture orientations from anisotropic active‐source P‐wave travel‐time tomography to investigate tectonic and magmatic interactions in the upper crust of Santorini Volcano, Greece, and the actively deforming region to the east. We use the anisotropy magnitude and seismic velocity reduction to model the relative distribution of both consistently oriented and randomly oriented faults/fractures. Our results show that oriented faulting/fracturing resulting from regional‐scale (>10 km) tectonic stresses is distributed broadly across the region at 2–3 km depth, approximately paralleling volcanic/magmatic features. On a local‐scale, magmatism is neither localized in areas of higher oriented fault/fracture density, nor is it accommodating enough extensional strain to inhibit oriented faulting/fracturing of host rock. The alignment of magmatic features shows strong tectonic control despite the lack of correlation with local oriented fault/fracture density. These results suggest that magmatic processes are strongly influenced by regional‐scale, not local‐scale, tectonic processes. We infer regional processes have a greater impact on magmatism than local features due to their greater effect at depth. 
    more » « less
  2. Abstract At extensional volcanic arcs, faulting often acts to localize magmatism. Santorini is located on the extended continental crust of the Aegean microplate and is one of the most active volcanoes of the Hellenic arc, but the relationship between tectonism and magmatism remains poorly constrained. As part of the Plumbing Reservoirs Of The Earth Under Santorini experiment, seismic data were acquired across the Santorini caldera and the surrounding region using a dense amphibious array of >14,300 marine sound sources and 156 short‐period seismometers, covering an area 120 km by 45 km. Here aPwave velocity model of the shallow, upper‐crustal structure (<3‐km depth), obtained using travel time tomography, is used to delineate fault zones, sedimentary basins, and tectono‐magmatic lineaments. Our interpretation of tectonic boundaries and regional faults are consistent with prior geophysical studies, including the location of basin margins and E‐W oriented basement faults within the Christiana Basin west of Santorini. Reduced seismic velocities within the basement east of Santorini, near the Anydros and Anafi Basins, are coincident with a region of extensive NE‐SW faulting and active seismicity. The structural differences between the eastern and western sides of Santorini are in agreement with previously proposed models of regional tectonic evolution. Additionally, we find that regional magmatism has been localized in NE‐SW trending basin‐like structures that connect the Christiana, Santorini, and Kolumbo volcanic centers. At Santorini itself, we find that magmatism has been localized along NE‐SW trending lineaments that are subparallel to dikes, active faults, and regional volcanic chains. These results show strong interaction between magmatism and active deformation. 
    more » « less
  3. Deep‐crustal magma plumbing at arc volcanoes controls the volume, frequency, and composition of magma being transported to and stored in the upper crust. However, the mid‐to‐lower crust remains a challenging region to image. We explore the mid‐to‐lower crustal velocity structure beneath the Christiana‐Santorini‐Kolumbo Volcanic Field (CSKVF) to better understand how an established stratovolcano and flanking volcano (Santorini and Kolumbo) are fed through the mid‐to‐lower crust. We use active‐source seismic data to obtain a P‐wave velocity model of the crust below the CSKVF. We invert direct and reflected P phases to cover the entire depth extent of the crust and solve for the Moho interface depth. Our model requires a curved Moho interface representative of crustal thickening via underplating. Results show a highVpanomaly in the lower crust under Santorini and a mid‐crustal lowVpanomaly offset from both Santorini and Kolumbo. We find that accumulation of magma is located under the local extensional basin in the upper mid‐crust (<10 km) but is offset at deeper depths. We find evidence for melt storage at 11–13 km depth feeding volcanism at the Kolumbo volcanic chain. This melt is also a plausible source for the 2025 seismic swarm and dike intrusion. Resolution is limited in the mid‐crust below the Santorini caldera, leaving Santorini's mid‐crustal magma plumbing unconstrained. We think it likely that Santorini and Kolumbo have entirely separate crustal plumbing systems and mantle sources, but allow the possibility of a connection in the mid or lower crust. 
    more » « less
    Free, publicly-accessible full text available April 1, 2026
  4. Santorini volcano has a history of caldera‐forming eruptions, most recently in the Late Bronze Age, at 3.4 kya, and remains volcanically active. The Kolumbo submarine volcano, located 7 km to the northeast of Santorini, erupted in 1650 AD in a deadly phreatomagmatic eruption. Ongoing seismic activity and active hydrothermal venting at Kolumbo indicate this volcano is a significant hazard to the Santorini region. The magma source for Santorini and the Kolumbo edifice are considered separate in the shallow crust, though their deeper magma distribution is not yet constrained. In this study, we improve constraints on the mid‐crustal magma system of Santorini caldera and the nearby Kolumbo volcano using local earthquake tomography. We use 1515 P‐wave and 1435 S‐wave arrival times from 63 local earthquakes with magnitudes from 0.5 to 3.0 that occurred between 5 and 15 km depth together with an existing data set of active source Pg arrivals. The upper crustal magma system beneath Santorini is imaged to at least 6 km depth, and to 12 km depth beneath Kolumbo. We recover a high P‐wave velocity layer (∼6–8 km) under the Kolumbo magma reservoir that we infer is a rheologically strong seismogenic layer. We also recover a mid‐crustal magma body below 8 km depth located to the NE of Santorini and Kolumbo. 
    more » « less
    Free, publicly-accessible full text available April 1, 2026
  5. null (Ed.)
    Santorini is located in the central part of the Hellenic Volcanic Arc (South Aegean Sea) and is well known for the Late-Bronze-Age “Minoan” eruption that may have been responsible for the decline of the great Minoan civilization on the island of Crete. To use gravity to probe the internal structure of the volcano and to determine whether there are temporal variations in gravity due to near surface changes, we construct two gravity maps. Dionysos Satellite Observatory (DSO) of the National Technical University of Athens (NTUA) carried out terrestrial gravity measurements in December 2012 and in September 2014 at selected locations on Thera, Nea Kameni, Palea Kameni, Therasia, Aspronisi and Christiana islands. Absolute gravity values were calculated using raw gravity data at every station for all datasets. The results were compared with gravity measurements performed in July 1976 by DSO/NTUA and absolute gravity values derived from the Hellenic Military Geographical Service (HMGS) and other sources. Marine gravity data that were collected during the PROTEUS project in November and December 2015 fill between the land gravity datasets. An appropriate Digital Elevation Model (DEM) with topographic and bathymetric data was also produced. Finally, based on the two combined datasets (one for 2012–2014 and one for the 1970s), Free air and complete Bouguer gravity anomaly maps were produced following the appropriate data corrections and reductions. The pattern of complete Bouguer gravity anomaly maps was consistent with seismological results within the caldera. Finally from the comparison of the measurements made at the same place, we found that, within the caldera, the inner process of the volcano is ongoing both before, and after, the unrest period of 2011–2012. 
    more » « less
  6. null (Ed.)
    Abstract Despite multidisciplinary evidence for crustal magma accumulation below Santorini volcano, Greece, the structure and melt content of the shallow magmatic system remain poorly constrained. We use three-dimensional (3-D) velocity models from tomographic inversions of active-source seismic P-wave travel times to identify a pronounced low-velocity anomaly (–21%) from 2.8 km to 5 km depth localized below the northern caldera basin. This anomaly is consistent with depth estimates of pre-eruptive storage and a recent inflation episode, supporting the interpretation of a shallow magma body that causes seismic attenuation and ray bending. A suite of synthetic tests shows that the geometry is well recovered while a range of melt contents (4%–13% to fully molten) are allowable. A thin mush region (2%–7% to 3%–10% melt) extends from the main magma body toward the northeast, observed as low velocities confined by tectono-magmatic lineaments. This anomaly terminates northwest of Kolumbo; little to no melt underlies the seamount from 3 to 5 km depth. These structural constraints suggest that crustal extension and edifice loads control the geometry of magma accumulation and emphasize that the shallow crust remains conducive to melt storage shortly after a caldera-forming eruption. 
    more » « less
  7. null (Ed.)