skip to main content

Title: Numerical Analysis of Time‐Dependent Conduit Magma Flow in Dome‐Forming Eruptions With Application to Mount St. Helens 2004–2008

Conduit models of volcanic eruptions simulate magma evolution through phase transitions and material changes during ascent. We present a time‐dependent one‐dimensional model of a chamber‐conduit system to examine the temporal evolution of dome‐forming eruptions. As magma ascends, volatiles exsolve and may escape vertically through the column or laterally through the conduit walls. Magma solidifies which increases viscosity, leading to a natural transition from viscous flow at depth to frictional sliding along the conduit walls near the surface, resulting in the extrusion of a semisolid plug. The model evaluates time‐ and depth‐dependent pressure, velocity, porosity, and relative amounts of exsolved water to carbon dioxide. Transient effects arise when magma outflux from the chamber appreciably decreases pressure over the magma ascent timescale. For low magma permeability, transient effects increase porosity and velocity relative to steady‐state solutions. For high magma permeability, efficient vertical and lateral gas escape depresses porosity and velocity at later times. We use the model to predict three time series data sets from the 2004–2008 eruption of Mount St. Helens: extruded volume, ground deformation, and carbon dioxide emissions. We quantify sensitivity of model predictions to input parameters using the distance‐based generalized sensitivity analysis. Chamber volatile content, volume, and excess pressure influence the amplitude of observables, while conduit radius, frictional rate dependence and magma permeability influence temporal evolution. High magma permeability can cause marked departures from exponentially decaying flux and may explain the unique temporal evolution of deformation observed at the only nearby continuous GPS station in operation at the eruption onset.

more » « less
Author(s) / Creator(s):
Publisher / Repository:
DOI PREFIX: 10.1029
Date Published:
Journal Name:
Journal of Geophysical Research: Solid Earth
Page Range / eLocation ID:
p. 11251-11273
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    Mafic volcanic activity is dominated by effusive to mildly explosive eruptions. Plinian and ignimbrite-forming mafic eruptions, while rare, are also possible; however, the conditions that promote such explosivity are still being explored. Eruption style is determined by the ability of gas to escape as magma ascends, which tends to be easier in low-viscosity, mafic magmas. If magma permeability is sufficiently high to reduce bubble overpressure during ascent, volatiles may escape from the magma, inhibiting violent explosive activity. In contrast, if the permeability is sufficiently low to retain the gas phase within the magma during ascent, bubble overpressure may drive magma fragmentation. Rapid ascent may induce disequilibrium crystallization, increasing viscosity and affecting the bubble network with consequences for permeability, and hence, explosivity. To explore the conditions that promote strongly explosive mafic volcanism, we combine microlite textural analyses with synchrotron x-ray computed microtomography of 10 pyroclasts from the 12.6 ka mafic Curacautín Ignimbrite (Llaima Volcano, Chile). We quantify microlite crystal size distributions (CSD), microlite number densities, porosity, bubble interconnectivity, bubble number density, and geometrical properties of the porous media to investigate the role of magma degassing processes at mafic explosive eruptions. We use an analytical technique to estimate permeability and tortuosity by combing the Kozeny-Carman relationship, tortuosity factor, and pyroclast vesicle textures. The groundmass of our samples is composed of up to 44% plagioclase microlites, > 85% of which are < 10 µm in length. In addition, we identify two populations of vesicles in our samples: (1) a convoluted interconnected vesicle network produced by extensive coalescence of smaller vesicles (> 99% of pore volume), and (2) a population of very small and completely isolated vesicles (< 1% of porosity). Computed permeability ranges from 3.0 × 10−13to 6.3 × 10−12m2, which are lower than the similarly explosive mafic eruptions of Tarawera (1886; New Zealand) and Etna (112 BC; Italy). The combination of our CSDs, microlite number densities, and 3D vesicle textures evidence rapid ascent that induced high disequilibrium conditions, promoting rapid syn-eruptive crystallization of microlites within the shallow conduit. We interpret that microlite crystallization increased viscosity while simultaneously forcing bubbles to deform as they grew together, resulting in the permeable by highly tortuous network of vesicles. Using the bubble number densities for the isolated vesicles (0.1-3−3 × 104 bubbles per mm3), we obtain a minimum average decompression rate of 1.4 MPa/s. Despite the textural evidence that the Curacautín magma reached the percolation threshold, we propose that rapid ascent suppressed outgassing and increased bubble overpressures, leading to explosive fragmentation. Further, using the porosity and permeability of our samples, we estimated that a bubble overpressure > 5 MPa could have been sufficient to fragment the Curacautín magma. Other mafic explosive eruptions report similar disequilibrium conditions induced by rapid ascent rate, implying that syn-eruptive disequilibrium conditions may control the explosivity of mafic eruptions more generally.

    more » « less
  2. Abstract

    Water and carbon dioxide are the most abundant volatile components in terrestrial magmas. As they exsolve into magmatic vapour, they promote magma buoyancy, accelerating ascent and modulating eruptive dynamics. It is commonly thought that an increase in pre-eruptive volatile content produces an increase in eruption intensity. Using a conduit model for basaltic eruptions, covering the upper 6 km of conduit, we show that for the same chamber conditions mass eruption rate is not affected by CO2content, whereas an increase in H2O up to 10 wt.% produces an increase in eruption rate of an order of magnitude. It is only when CO2is injected in the magma reservoir from an external source that the resulting pressurisation will generate a strong increase in eruption rate. Results also show that ascent velocity and fragmentation depth are strongly affected by pre-eruptive volatile contents demonstrating a link between volatile content and eruptive style.

    more » « less
  3. Abstract

    Explosive volcanic eruptions radiate seismic waves as a consequence of pressure and shear traction changes within the conduit/chamber system. Kinematic source inversions utilize these waves to determine equivalent seismic force and moment tensor sources, but relation to eruptive processes is often ambiguous and nonunique. In this work, we provide an alternative, forward modeling approach to calculate moment tensor and force equivalents of a model of eruptive conduit flow and chamber depressurization. We explain the equivalence of two seismic force descriptions, the first in terms of traction changes on conduit/chamber walls, and the second in terms of changes in magma momentum, weight, and momentum transfer to the atmosphere. Eruption onset is marked by a downward seismic force, associated with loss of restraining shear tractions from fragmentation. This is followed by a much larger upward seismic force from upward drag of ascending magma and reduction of magma weight remaining in the conduit/chamber system. The static force is upward, arising from weight reduction. We calculate synthetic seismograms to examine the expression of eruptive processes at different receiver distances. Filtering these synthetics to the frequency band typically resolved by broadband seismometers produces waveforms similar to very long period seismic events observed in strombolian and vulcanian eruptions. However, filtering heavily distorts waveforms, accentuating processes in early, unsteady parts of eruptions and eliminating information about longer (ultra long period time scale depressurization and weight changes that dominate unfiltered seismograms. Our workflow can be utilized to directly and quantitatively connect eruption models with seismic observations.

    more » « less
  4. Abstract

    The loss of volatiles from a magma reservoir affects the magmatic overpressure responsible for driving ground deformation and eruptions. Although the high‐temperature metamorphic aureole around a magma chamber is typically considered to have low permeability, recent theoretical, experimental, and field studies have highlighted the role of transient permeability in magmatic systems. Also, direct measurements suggest that passive degassing is a significant component of total volatile loss in both basaltic and silicic volcanoes. Consequently, the effective permeability of the crust when magma is present in the system can be many orders of magnitude larger than that of exhumed rock samples. We develop a fully coupled porothermoelastic framework to account for both the flow of volatiles as well as associated effects on the stress state of the crust and calculate an analytical solution for spherical geometry. We then combine a magma chamber box model with these solutions to analyze eruption dynamics in magmatic systems. We find that in addition to viscous relaxation, magma recharge, and cooling timescales, the pore pressure diffusion timescale exerts a first‐order control on volcanic eruptions with moderately high crustal permeabilities of order 10−17to 10−19m2. We describe a parameter space to identify which components dominate in different regimes for volcanic eruptions according to these different timescales.

    more » « less
  5. Bubble and crystal textures evolve during magma ascent, altering properties that control ascent such as permeability and viscosity. Eruption style results from feedbacks between ascent, bubble nucleation and growth, microlite crystallization, and gas loss, all processes recorded in pyroclasts. We show that pyroclasts of the mafic Curacautín ignimbrite of Llaima volcano, Chile, record a history of repeated autobrecciation, fusing, and crystallization. We identified pyroclasts with domains of heterogeneous vesicle textures in sharp contact with one another that are overprinted by extensive microlite crystallization. Broken crystals with long axes (l) >10 μm record fragmentation events during the eruption. A second population of unbroken microlites with l ≤10 μm overprint sutures between fused domains, suggesting the highly crystalline groundmass formed at shallow depths after autobrecciation and fusing. Nearly all pyroclasts contain plutonic and ancestral Llaima lithics as inclusions, implying that fusing occurs from a few kilometers depth to as shallow as the surface. We propose that Curacautín ignimbrite magma autobrecciated during ascent and proto-pyroclasts remained melt rich enough to fuse together. Lithics from the conduit margins were entrained into the proto-pyroclasts before fusing. Autobrecciation broke existing phenocrysts and microlites; rapid post-fusing crystallization then generated the highly crystalline groundmass. This proposed conduit process has implications for interpreting the products of mafic explosive eruptions. 
    more » « less