skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Semiclassical transition state theory/master equation kinetics of HO + CO: Performance evaluation
Abstract Previously, master equation (ME) simulations using semiclassical transition state theory (SCTST) and high‐accuracy extrapolated ab initio thermochemistry (HEAT) predicted rate constants in excellent agreement with published experimental data over a wide range of pressure and temperatures ≳250 K, but the agreement was not as good at lower temperatures. Possible reasons for this reduced performance are investigated by (a) critically evaluating the published experimental data and by investigating; (b) three distinct ME treatments of angular momentum, including one that is exact at the zero‐ and infinite‐pressure limits; (c) a hindered‐rotor model for HOCO that implicitly includes the cis‐ and trans‐conformers; (d) possible empirical adjustments of the thermochemistry; (e) possible empirical adjustments to an imaginary frequency controlling tunneling; (f) including or neglecting the prereaction complex PRC1; and (g) its possible bimolecular reactions. Improvements include better approximations to factors in SCTST and using the Hill and van Vleck treatment of angular momentum coupling. Evaluation of literature data does not reveal any specific shortcomings, but the stated uncertainties may be underestimated. All ME treatments give excellent fits to experimental data atT≥ 250 K, but the discrepancy atT < 250 K persists. Note that each ME model requires individual empirical energy transfer parameters. Thermochemical adjustments were unable to match the experimental H/D kinetic isotope effects. Adjusting an imaginary frequency can achieve good fits, but the adjustments are unacceptably large. Whether PRC1 and its possible bimolecular reactions are included had little effect. We conclude that none of the adjustments is an improvement over the unadjusted theory. Note that only one set of experimental data exists in the regime of the discrepancy with theory, and data for DO + CO are scanty.  more » « less
Award ID(s):
1664325
PAR ID:
10455277
Author(s) / Creator(s):
 ;  ;  
Publisher / Repository:
Wiley Blackwell (John Wiley & Sons)
Date Published:
Journal Name:
International Journal of Chemical Kinetics
Volume:
52
Issue:
12
ISSN:
0538-8066
Page Range / eLocation ID:
p. 1022-1045
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. The acetylperoxy + HO 2 reaction has multiple impacts on the troposphere, with a triplet pathway leading to peracetic acid + O 2 (reaction (1a)) competing with singlet pathways leading to acetic acid + O 3 (reaction (1b)) and acetoxy + OH + O 2 (reaction (1c)). A recent experimental study has reported branching fractions for these three pathways ( α 1a , α 1b , and α 1c ) from 229 K to 294 K. We constructed a theoretical model for predicting α 1a , α 1b , and α 1c using quantum chemical and Rice–Ramsperger–Kassel–Marcus/master equation (RRKM/ME) simulations. Our main quantum chemical method was Weizmann-1 Brueckner Doubles (W1BD) theory; we combined W1BD and equation-of-motion spin-flip coupled cluster (SF) theory to treat open-shell singlet structures. Using RRKM/ME simulations that included all conformers of acetylperoxy–HO 2 pre-reactive complexes led to a 298 K triplet rate constant, k 1a = 5.11 × 10 −12 cm 3 per molecule per s, and values of α 1a in excellent agreement with experiment. Increasing the energies of all singlet structures by 0.9 kcal mol −1 led to a combined singlet rate constant, k 1b+1c = 1.20 × 10 −11 cm 3 per molecule per s, in good agreement with experiment. However, our predicted variations in α 1b and α 1c with temperature are not nearly as large as those measured, perhaps due to the inadequacy of SF theory in treating the transition structures controlling acetic acid + O 3 formation vs. acetoxy + OH + O 2 formation. 
    more » « less
  2. Abstract Identifying possible microscopic mechanisms underlying superfluidity has been the goal of various studies since the introduction of the original BCS theory. Recently a series of papers have proposed microscopic dynamics based on normal modes to describe superfluidity without the use of real-space Cooper pairs. Multiple properties were determined with excellent agreement with experimental data. The group theoretic basis of this generalN-body approach has allowed the microscopic behavior underlying these results to be analyzed in detail. This reimagination is now used to reinterpret several interrelated phenomena including Cooper pairs, the Fermi sea, and Pauli blocking. This approach adheres closely to the early tenets of superconductivity/superfluidity which assumed pairing only in momentum space, not in real space. The Pauli principle is used, in its recently revealed role in collective motion, to select the allowed normal modes. The expected properties of superfluidity including the rigidity of the wave function, interactions between the fermions in different pairs, convergence of the momentum and the gap in the excitation spectrum are discussed. 
    more » « less
  3. A<sc>bstract</sc> We study the interactions of systems of two and three nondegenerate mesons composed of pions and kaons at maximal isospin using lattice QCD, specificallyπ+K++π+K+andK+K+π+. Utilizing the stochastic LapH method, we determine the spectrum of these systems on two CLSNf= 2 + 1 ensembles with pion masses of 200 MeV and 340 MeV, and include many levels in different momentum frames. We constrain the K matrices describing two- and three-particle interactions by fitting the spectrum to the results predicted by the finite-volume formalism, including up topwaves. This requires also results for theπ+π+andK+K+spectrum, which have been obtained previously on the same configurations. We explore different fitting strategies, comparing fits to energy shifts with fits to energies boosted to the rest frame, and also comparing simultaneous global fits to all relevant two- and three-particle channels to those where we first fit two-particle channels and then add in the three-particle information. We provide the first determination of the three-particle K matrix inπ+π+K+andK+K+π+systems, finding statistically significant nonzero results in most cases. We includesandpwaves in the K matrix forπ+K+scattering, finding evidence for an attractivep-wave scattering length. We compare our results to Chiral Perturbation Theory, including an investigation of the impact of discretization errors, for which we provide the leading order predictions obtained using Wilson Chiral Perturbation Theory. 
    more » « less
  4. Abstract We consider WIYN/Hydra spectra of 329 photometric candidate members of the 420 Myr old open cluster M48 and report lithium detections or upper limits for 234 members and likely members. The 171 single members define a number of notable Li-mass trends, some delineated even more clearly than in Hyades/Praesepe: the giants are consistent with subgiant Li dilution and prior MS Li depletion due to rotational mixing. A dwarfs (8600–7700 K) have upper limits higher than the presumed initial cluster Li abundance. Two of five late A dwarfs (7700–7200 K) are Li-rich, possibly due to diffusion, planetesimal accretion, and/or engulfment of hydrogen-poor planets. Early F dwarfs already show evidence of Li depletion seen in older clusters. The Li–Tefftrends of the Li Dip (6675–6200 K), Li Plateau (6200–6000 K), and G and K dwarfs (6000–4000 K) are very clearly delineated and are intermediate to those of the 120 Myr old Pleiades and 650 Myr old Hyades/Praesepe, which suggests a sequence of Li depletion with age. The cool side of the Li Dip is especially well defined with little scatter. The Li–Tefftrend is very tight in the Li Plateau and early G dwarfs, but scatter increases gradually for cooler dwarfs. These patterns support and constrain models of the universally dominant Li depletion mechanism for FGK dwarfs, namely rotational mixing due to angular momentum loss; we discuss how diffusion and gravity-wave-driven mixing may also play roles. For late G/K dwarfs, faster rotators show higher Li than slower rotators, and we discuss possible connections between angular momentum loss and Li depletion. 
    more » « less
  5. While spin angular momentum is limited to ±ℏ, orbital angular momentum (OAM) is, in principle, unbounded, enabling tailored optical transition rules in quantum systems. However, the large optical size of vortex beams hinders their coupling to nanoscale platforms such as quantum emitters. To address this challenge, we experimentally demonstrate the subdiffraction focusing of an OAM-carrying beam using a hypergrating, a flat meta-structure based on a multilayered hyperbolic composite. We show that our structure generates and guides high-wave vector modes to a deeply subwavelength spot and experimentally demonstrate the focus of an OAM-carrying beam on a spot size of ∼λ/3. We also show how the proposed platform facilitates the formation of an optical skyrmion with spin textures as small asλ/250, opening new avenues for controlling light–matter interactions. 
    more » « less