skip to main content


Title: Delay‐aware privacy‐preserving location‐based services under spatiotemporal constraints
Summary

The ubiquitous use of location‐based services (LBS) through smart devices produces massive amounts of location data. An attacker, with an access to such data, can reveal sensitive information about users. In this paper, we study location inference attacks based on the probability distribution of historical location data, travel time information between locations using knowledge of a map, and short and long‐term observation of privacy‐preserving queries. We show that existing privacy‐preserving approaches are vulnerable to such attacks. In this context, we propose a novel location privacy‐preserving approach, called KLAP, based on the three fundamental obfuscation requirements: minimumk‐locations,l‐diversity, and privacyareapreservation. KLAP adopts a personalized privacy preference for sporadic, frequent, and continuous LBS use cases. Specifically, it generates a secure concealing region (CR) to obfuscate the user's location and directs that CR to the service provider. The main contribution of this work is twofold. First, a CR pruning technique is devised to establish a balance between privacy and delay in LBS usage. Second, a new attack model called a long‐term obfuscated location tracking attack, and its countermeasure is proposed and evaluated both theoretically and empirically. We assess KLAP with two real‐world datasets. Experimental results show that it can achieve better privacy, reduced delay, and lower communication costs than existing state‐of‐the‐art methods.

 
more » « less
NSF-PAR ID:
10455410
Author(s) / Creator(s):
 ;  ;  ;  
Publisher / Repository:
Wiley Blackwell (John Wiley & Sons)
Date Published:
Journal Name:
International Journal of Communication Systems
Volume:
34
Issue:
1
ISSN:
1074-5351
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. In Location-Based Services (LBS), users are required to disclose their precise location information to query a service provider. An untrusted service provider can abuse those queries to infer sensitive information on a user through spatio-temporal and historical data analyses. Depicting the drawbacks of existing privacy-preserving approaches in LBS, we propose a user-centric obfuscation approach, called KLAP, based on the three fundamental obfuscation requirements: k number of locations, l-diversity, and privacy area preservation. Considering user's sensitivity to different locations and utilizing Real-Time Traffic Information (RTTI), KLAP generates a convex Concealing Region (CR) to hide user's location such that the locations, forming the CR, resemble similar sensitivity and are resilient against a wide range of inferences in spatio-temporal domain. For the first time, a novel CR pruning technique is proposed to significantly improve the delay between successive CR submissions. We carry out an experiment with a real dataset to show its effectiveness for sporadic, frequent, and continuous service use cases. 
    more » « less
  2. Abstract

    Ecologists have long been interested in linking individual behaviour with higher level processes. For motile species, this ‘upscaling’ is governed by how well any given movement strategy maximizes encounters with positive factors and minimizes encounters with negative factors. Despite the importance of encounter events for a broad range of ecological processes, encounter theory has not kept pace with developments in animal tracking or movement modelling. Furthermore, existing work has focused primarily on the relationship between animal movement and encounterrateswhile the relationship between individual movement and the spatiallocationsof encounter events in the environment has remained conspicuously understudied.

    Here, we bridge this gap by introducing a method for describing the long‐term encounter location probabilities for movement within home ranges, termed the conditional distribution of encounters (CDE). We then derive this distribution, as well as confidence intervals, implement its statistical estimator into open‐source software and demonstrate the broad ecological relevance of this distribution.

    We first use simulated data to show how our estimator provides asymptotically consistent estimates. We then demonstrate the general utility of this method for three simulation‐based scenarios that occur routinely in biological systems: (a) a population of individuals with home ranges that overlap with neighbours; (b) a pair of individuals with a hard territorial border between their home ranges; and (c) a predator with a large home range that encompassed the home ranges of multiple prey individuals. Using GPS data from white‐faced capuchinsCebus capucinus, tracked on Barro Colorado Island, Panama, and sleepy lizardsTiliqua rugosa,tracked in Bundey, South Australia, we then show how the CDE can be used to estimate the locations of territorial borders, identify key resources, quantify the potential for competitive or predatory interactions and/or identify any changes in behaviour that directly result from location‐specific encounter probability.

    The CDE enables researchers to better understand the dynamics of populations of interacting individuals. Notably, the general estimation framework developed in this work builds straightforwardly off of home range estimation and requires no specialized data collection protocols. This method is now openly available via thectmm Rpackage.

     
    more » « less
  3. null (Ed.)
    Mobile devices have been an integral part of our everyday lives. Users' increasing interaction with mobile devices brings in significant concerns on various types of potential privacy leakage, among which location privacy draws the most attention. Specifically, mobile users' trajectories constructed by location data may be captured by adversaries to infer sensitive information. In previous studies, differential privacy has been utilized to protect published trajectory data with rigorous privacy guarantee. Strong protection provided by differential privacy distorts the original locations or trajectories using stochastic noise to avoid privacy leakage. In this paper, we propose a novel location inference attack framework, iTracker, which simultaneously recovers multiple trajectories from differentially private trajectory data using the structured sparsity model. Compared with the traditional recovery methods based on single trajectory prediction, iTracker, which takes advantage of the correlation among trajectories discovered by the structured sparsity model, is more effective in recovering multiple private trajectories simultaneously. iTracker successfully attacks the existing privacy protection mechanisms based on differential privacy. We theoretically demonstrate the near-linear runtime of iTracker, and the experimental results using two real-world datasets show that iTracker outperforms existing recovery algorithms in recovering multiple trajectories. 
    more » « less
  4. Abstract

    Small‐to‐medium businesses are always seeking affordable ways to advertise their products and services securely. With the emergence of mobile technology, it is possible than ever to implement innovative Location‐Based Advertising (LBS) systems using smartphones that preserve the privacy of mobile users. In this paper, we present a prototype implementation of such systems by developing a distributed privacy‐preserving system, which has parts executing on smartphones as a mobile app, as well as a web‐based application hosted on the cloud. The mobile app leverages Google Maps libraries to enhance the user experience in using the app. Mobile users can use the app to commute to their daily destinations while viewing relevant ads such as job openings in their neighborhood, discounts on favorite meals, etc. We developed a client‐server privacy architecture that anonymizes the mobile user trajectories using a bounded perturbation strategy. A multi‐modal sensing approach is proposed for modeling the context switching of the developed LBS system, which we represent as a Finite State Machine model. The multi‐modal sensing approach can reduce the power consumed by mobile devices by automatically detecting sensing mode changes to avoid unnecessary sensing. The developed LBS system is organized into two parts: the business side and the user side. First, the business side allows business owners to create new ads by providing the ad details, Geo‐location, photos, and any other instructions. Second, the user side allows mobile users to navigate through the map to see ads while walking, driving, bicycling, or quietly sitting in their offices. Experimental results are presented to demonstrate the scalability and performance of the mobile side. Our experimental evaluation demonstrates that the mobile app incurs low processing overhead and consequently has a small energy footprint.

     
    more » « less
  5. null (Ed.)
    While social networking sites gain massive popularity for their friendship networks, user privacy issues arise due to the incorporation of location-based services (LBS) into the system. Preferential LBS takes a user’s social profile along with their location to generate personalized recommender systems. With the availability of the user’s profile and location history, we often reveal sensitive information to unwanted parties. Hence, providing location privacy to such preferential LBS requests has become crucial. However, the current technologies focus on anonymizing the location through granularity generalization. Such systems, although provides the required privacy, come at the cost of losing accurate recommendations. Hence, in this paper, we propose a novel location privacy-preserving mechanism that provides location privacy through k -anonymity and provides the most accurate results. Experimental results that focus on mobile users and context-aware LBS requests prove that the proposed method performs superior to the existing methods. 
    more » « less