Silicic submarine volcanic eruptions can produce large volumes of pumices that may rise buoyantly to the ocean surface and/or sink to the seafloor. For eruptions that release significant volumes of pumice into rafts, the proximal to medial submarine geologic record is thus depleted in large volumes of pumice that would have sedimented closer to source in any subaerial eruption. The 2012 eruption of Havre volcano, a submarine volcano in the Kermadec Arc, presents a unique opportunity to study the partitioning of well-constrained rafted and seafloor pumice. Macro- and microtextural analysis was performed on clasts from the Havre pumice raft and from coeval pumiceous seafloor units around the Havre caldera. The raft and seafloor clasts have indistinguishable macrotextures, componentry, and vesicularity ranges. Microtextural differences are apparent as raft pumices have higher vesicle number densities (109 cm−3vs. 108 cm−3) and significantly lower pore space connectivity (0.3–0.95 vs. 0.9–1.0) than seafloor pumices. Porosity analysis shows that high vesicularity raft pumices required trapping of gas in the connected porosity to remain afloat, whereas lower vesicularity raft pumices could float just from gas within isolated porosity. Measurements of minimum vesicle throat openings further show that raft pumices have a larger proportion of small vesicle throats than seafloor pumices. Narrow throats increase gas trapping as a result of higher capillary pressures acting over gas–water interfaces between vesicles and lower capillary number inhibiting gas bubble escape. Differences in isolated porosity and pore throat distribution ultimately control whether pumices sink or float and thus whether pumice deposits are preserved or not on the seafloor.
On the 7 August 2019, a 195 km2raft of andesitic pumice was produced at 200 m below sea level at an unnamed submarine volcano in the Tonga Islands (Southwest Pacific Ocean). Drifting chiefly westward, the raft reached the Fiji Islands on the 19 September. Yachts that crossed the raft as early as 2 days post‐eruption provided an outstanding data set of raft characteristics and pristine samples. Further, exceptional tracking of raft dispersal by satellite images allows us to contrast virtual particle tracking methods with ocean model currents to explore the relative influence of surface currents, wind, and wave action on pumice flotsam dispersal over up to 2 years. Attenuation of ocean waves by large and compact pumice rafts appears to reduce the effect of Stokes drift. The coupling of real‐time satellite observations with oceanographic Lagrangian simulations allows near‐real time forecasting for global maritime hazard mitigation.
more » « less- PAR ID:
- 10455444
- Publisher / Repository:
- DOI PREFIX: 10.1029
- Date Published:
- Journal Name:
- Geophysical Research Letters
- Volume:
- 47
- Issue:
- 5
- ISSN:
- 0094-8276
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
Abstract -
Juveniles of marine species, such as sea turtles, are often understudied in movement ecology. To determine dispersal patterns and release effects, we released 40 satellite-tagged juvenile head-started green turtles (Chelonia mydas, 1–4 years) from two separate locations (January and July 2023) off the coast of the Cayman Islands. A statistical model and vector plots were used to determine drivers of turtle directional swimming persistence and the role of ocean current direction. More than half (N = 22) effectively dispersed in 6–22 days from the islands to surrounding areas. The January turtles radiated out (185–1138 km) in distinct directions in contrast to the northward dispersal of the July turtles (27–396 km). Statistical results and vector plots supported that daily swimming persistence increased towards the end of tracks and near coastal regions, with turtles largely swimming in opposition to ocean currents. These results demonstrate that captive-reared juvenile greens have the ability to successfully navigate towards key coastal developmental habitats. Differences in dispersal (January vs. July) further support the importance of release timing and location. Our results inform conservation of the recovering Caymanian green turtles and we advise on how our methods can be improved and modified for future sea turtle and juvenile movement ecology studies.
-
Abstract Ocean warming, acidification, deoxygenation and reduced productivity are widely considered to be the major stressors to ocean ecosystems induced by emissions of
CO 2. However, an overlooked stressor is the change in ocean circulation in response to climate change. Strong changes in the intensity and position of the western boundary currents have already been observed, and the consequences of such changes for ecosystems are beginning to emerge. In this study, we address climatically induced changes in ocean circulation on a global scale but relevant to propagule dispersal for species inhabiting global shelf ecosystems, using a high‐resolution global ocean model run under theIPCC RCP 8.5 scenario. The ¼ degree model resolution allows improved regional realism of the ocean circulation beyond that of availableCMIP 5‐class models. We use a Lagrangian approach forced by modelled ocean circulation to simulate the circulation pathways that disperse planktonic life stages. Based on trajectory backtracking, we identify present‐day coastal retention, dominant flow and dispersal range for coastal regions at the global scale. Projecting into the future, we identify areas of the strongest projected circulation change and present regional examples with the most significant modifications in their dominant pathways. Climatically induced changes in ocean circulation should be considered as an additional stressor of marine ecosystems in a similar way to ocean warming or acidification. -
The increase in genetic distance between marine individuals or populations with increasing distance has often been assumed to be influenced by dispersal distance. In turn, dispersal distance has often been assumed to correlate strongly with pelagic larval duration (PLD). We examined the consistency of these assumptions in species with long planktonic durations. Reviewing multiple marine species, Selkoe & Toonen (2011; Mar Ecol Prog Ser 436:291-305) demonstrated significant fit of a species’ PLD with metrics of genetic distance between sampling sites. However, for long dispersers (PLD >10 d) whose dispersal is more influenced by ocean currents, the fit of PLD and genetic connectivity metrics was not significant. We tested if using realistic ocean currents to determine simulated dispersal distances would produce an improved proxy for larval dispersal that correlates more strongly with genetic connectivity metrics. We estimated the dispersal distance of propagules for locations in the genetic studies compiled by Selkoe and Toonen with a global ocean model (Mercator, 1/12° resolution). The model-derived estimates of dispersal distance did not correlate better than PLD against the genetic diversity metrics global
F STkm-1and isolation-by-distance (IBD) slope. We explored 2 explanations: (1) our ocean circulation-based dispersal distance estimates are too simple to produce biologically meaningful improvement over PLD, and (2) IBD slope is not a powerful predictor of variation in dispersal distance between species with long PLD. Exploring these explanations suggests directions for future research which will enable better quantitative understanding of genetic diversity and its spatial distribution in coastal marine organisms. -
Abstract A 2‐km resolution ocean circulation model for the Eastern Bering Sea is utilized to understand whether and where slope‐interior exchange along the path of the Aleutian North Slope Current helps maintain the subsurface temperature maximum on the 26.8‐kg/m3isopycnal surface in the Bering Sea Basin, at approximately 300–400‐m depths. A simulation for June–October 2009 shows warmer water advecting westward on this isopycnal along the southern slope of the Aleutian Islands, through Amchitka Pass (180°W), and then eastward along the northern slope as the season progresses, reaching the Bering Canyon. However, Lagrangian particle tracking on this surface shows that very few floats released over the slope south of Amukta Pass (172°W) will end up in the Aleutian North Slope Current. The warming in the Aleutian North Slope Current at the depth of the 26.8‐kg/m3isopycnal can be explained as resulting from a tidally enhanced downward vertical turbulent flux of warmer water which has been advected eastward in faster flowing waters at shallower depths. This hypothesis is confirmed by the heat equation term balance analysis and Lagrangian particle tracking on the 26.8‐kg/m3surface and a shallower, 26.4‐kg/m3surface. The model shows that the warm slope current separates into the basin near several topographical features, particularly at 178°W (just east of Amchitka Pass) and 174°W (Atka Island). North of Amukta Pass, the warmer pattern is strongly modulated at the tidal and fortnightly time scales and is associated with mixing in and transport through the pass.