Abstract Acoustically-tracked subsurface floats provide insights into ocean complexity and were first deployed over 60 years ago. A standard tracking method uses a Least-Squares algorithm to estimate float trajectories based on acoustic ranging from moored sound sources. However, infrequent or imperfect data challenge such estimates, and Least-Squares algorithms are vulnerable to non-Gaussian errors. Acoustic tracking is currently the only feasible strategy for recovering float positions in the sea ice region, a focus of this study. Acoustic records recovered from under-ice floats frequently lack continuous sound source coverage. This is because environmental factors such as surface sound channels and rough sea ice attenuate acoustic signals, while operational considerations make polar sound sources expensive and difficult to deploy. Here we present a Kalman Smoother approach that, by including some estimates of float behavior, extends tracking to situations with more challenging data sets. The Kalman Smoother constructs dynamically constrained, error-minimized float tracks and variance ellipses using all possible position data. This algorithm outperforms the Least-Squares approach and a Kalman Filter in numerical experiments. The Kalman Smoother is applied to previously-tracked floats from the southeast Pacific (DIMES experiment), and the results are compared with existing trajectories constructed using the Least- Squares algorithm. The Kalman Smoother is also used to reconstruct the trajectories of a set of previously untracked, acoustically-enabled Argo floats in the Weddell Sea.
more »
« less
Improved Acoustic Tracking of RAFOS-Enabled Profiling Floats through the New Software Package artoa4argo
Abstract In sea ice–covered polar oceans, profiling Argo floats are often unable to surface for 9 months or longer, rendering acoustic RAFOS tracking the only method to obtain unambiguous under-ice positions. Tracking RAFOS-enabled floats has historically relied on the ARTOA3 software, which had originally been tailored toward nonprofiling floats in regions featuring the sound fixing and ranging (SOFAR) channel with acoustic ranges of approximately 1000 km. However, in sea ice–covered regions, RAFOS tracking is challenged due to (i) reduced acoustic ranges of RAFOS signals, and (ii) enhanced uncertainties in float and sound source clock offsets. A new software, built on methodologies of previous ARTOA versions, called artoa4argo, has been created to overcome these issues by exploiting additional float satellite fixes, resolving ambiguous float positions when tracking with only two sources and systematically resolving float and sound source clock offsets. To gauge the performance of artoa4argo, 21 RAFOS-enabled profiling floats deployed in the Weddell Sea during 2008–12 were tracked. These have previously been tracked in independent studies with a Kalman smoother and a multiconstraint method. The artoa4argo improves tracking by automating and streamlining methods. Although artoa4argo does not necessarily produce positions for every time step, which the Kalman smoother and multiconstraint methods do, whenever a track location is available, it outperforms both methods. Significance StatementArgo is an international program that collects oceanic data using floats that drift with ocean currents and sample the water column from 2000-m depth to the surface every 7–10 days. Upon surfacing, the float acquires a satellite position and transmits its data via satellite. In polar regions, with extensive seasonal sea ice coverage, floats are unable to surface for many months. Thus, any under-ice samples collected are missing positions, hampering their use in scientific endeavors. Since monitoring of polar regions is imperative to better understand and predict the effects of climate change, hydroacoustic tracking is employed there. Here a new acoustic tracking software, artoa4argo, is introduced, which improves tracking of these floats.
more »
« less
- Award ID(s):
- 2148517
- PAR ID:
- 10483788
- Publisher / Repository:
- American Meteorological Society
- Date Published:
- Journal Name:
- Journal of Atmospheric and Oceanic Technology
- Volume:
- 41
- Issue:
- 1
- ISSN:
- 0739-0572
- Format(s):
- Medium: X Size: p. 3-23
- Size(s):
- p. 3-23
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Abstract Argo‐type profiling floats do not receive satellite positioning while under sea ice. Common practice is to approximate unknown positions by linearly interpolating latitude‐longitude between known positions before and after ice cover, although it has been suggested that some improvement may be obtained by interpolating along contours of planetary‐geostrophic potential vorticity. Profiles with linearly interpolated positions represent 16% of the Southern Ocean Argo data set; consequences arising from this approximation have not been quantified. Using three distinct data sets from the Weddell Gyre—10‐day satellite‐tracked Argo floats, daily‐tracked RAFOS‐enabled floats, and a particle release simulation in the Southern Ocean State Estimate—we perform a data withholding experiment to assess position uncertainty in latitude‐longitude and potential vorticity coordinates as a function of time since last fix. A spatial correlation analysis using the float data provides temperature and salinity uncertainty estimates as a function of distance error. Combining the spatial correlation scales and the position uncertainty, we estimate uncertainty in temperature and salinity as a function of duration of position loss. Maximum position uncertainty for interpolation during 8 months without position data is 116 ± 148 km for latitude‐longitude and 92 ± 121 km for potential vorticity coordinates. The estimated maximum uncertainty in local temperature and salinity over the entire 2,000‐m profiles during 8 months without position data is 0.66 ∘C and 0.15 psu in the upper 300 m and 0.16 ∘C and 0.01 psu below 300 m.more » « less
-
Abstract The lack of continuous spatial and temporal sampling of hydrographic measurements in large parts of the Arctic Ocean remains a major obstacle for quantifying mean state and variability of the Arctic Ocean circulation. This shortcoming motivates an assessment of the utility of Argo-type floats, the challenges of deploying such floats due to the presence of sea ice, and the implications of extended times of no surfacing on hydrographic inferences. Within the framework of an Arctic coupled ocean–sea ice state estimate that is constrained to available satellite and in situ observations, we establish metrics for quantifying the usefulness of such floats. The likelihood of float surfacing strongly correlates with the annual sea ice minimum cover. Within the float lifetime of 4–5 years, surfacing frequency ranges from 10–100 days in seasonally sea ice–covered regions to 1–3 years in multiyear sea ice–covered regions. The longer the float drifts under ice without surfacing, the larger the uncertainty in its position, which translates into larger uncertainties in hydrographic measurements. Below the mixed layer, especially in the western Arctic, normalized errors remain below 1, suggesting that measurements along a path whose only known positions are the beginning and end points can help constrain numerical models and reduce hydrographic uncertainties. The error assessment presented is a first step in the development of quantitative methods for guiding the design of observing networks. These results can and should be used to inform a float network design with suggested locations of float deployment and associated expected hydrographic uncertainties.more » « less
-
The Southern Ocean Carbon and Climate Observations and Modeling (SOCCOM) project has deployed 194 profiling floats equipped with biogeochemical (BGC) sensors, making it one of the largest contributors to global BGC-Argo. Post-deployment quality control (QC) of float-based oxygen, nitrate, and pH data is a crucial step in the processing and dissemination of such data, as in situ chemical sensors remain in early stages of development. In situ calibration of chemical sensors on profiling floats using atmospheric reanalysis and empirical algorithms can bring accuracy to within 3 μmol O 2 kg –1 , 0.5 μmol NO 3 – kg –1 , and 0.007 pH units. Routine QC efforts utilizing these methods can be conducted manually through visual inspection of data to assess sensor drifts and offsets, but more automated processes are preferred to support the growing number of BGC floats and reduce subjectivity among delayed-mode operators. Here we present a methodology and accompanying software designed to easily visualize float data against select reference datasets and assess QC adjustments within a quantitative framework. The software is intended for global use and has been used successfully in the post-deployment calibration and QC of over 250 BGC floats, including all floats within the SOCCOM array. Results from validation of the proposed methodology are also presented which help to verify the quality of the data adjustments through time.more » « less
-
Abstract Profiles of oxygen measurements from Argo profiling floats now vastly outnumber shipboard profiles. To correct for drift, float oxygen data are often initially adjusted to deployment casts, ship‐based climatologies, or, recently, measurements of atmospheric oxygen for in situ calibration. Air calibration enables accurate measurements in the upper ocean but may not provide similar accuracy at depth. Using a quality controlled shipboard data set, we find that the entire Argo oxygen data set is offset relative to shipboard measurements (float minus ship) at pressures of 1,450–2,000 db by a median of −1.9 μmol kg−1(mean ± SD of −1.9 ± 3.9, 95% confidence interval around the mean of {−2.2, −1.6}) and air‐calibrated floats are offset by −2.7 μmol kg−1(−3.0 ± 3.4 (CI95%{−3.7, −2.4}). The difference between float and shipboard oxygen is likely due to offsets in the float oxygen data and not oxygen changes at depth or biases in the shipboard data set. In addition to complicating the calculation of long‐term ocean oxygen changes, these float oxygen offsets impact the adjustment of float nitrate and pH measurements, therefore biasing important derived quantities such as the partial pressure of CO2(pCO2) and dissolved inorganic carbon. Correcting floats with air‐calibrated oxygen sensors for the float‐ship oxygen offsets alters float pH by a median of 3.0 mpH (3.1 ± 3.7) and float‐derived surfacepCO2by −3.2 μatm (−3.2 ± 3.9). This adjustment to floatpCO2represents half, or more, of the bias in float‐derivedpCO2reported in studies comparing floatpCO2to shipboardpCO2measurements.more » « less
An official website of the United States government
