The processes driving defense trait correlations may vary within and between species based on ecological or environmental contexts. However, most studies of plant defense theory fail to address this potential for shifts in trait correlations across scales. In this work, we tested for correlations between multiple defensive traits (secondary chemistry, carbon to nitrogen ratio, domatia, leaf toughness, trichomes, and pearl bodies) across a common garden of 21Vitisspecies and eighteen genotypes of the speciesVitis ripariato identify when and where patterns of defense trait evolution persist or break down across biological scales. Additionally, we asked whetherVitisdefense trait investment correlates with environmental variables as predicted by plant defense theory, using environmental metrics for eachVitisspecies andV. ripariagenotype from the GBIF and WorldClim databases. We tested for correlations between defense trait investment, herbivore palatability, and environmental variables using phylogenetically informed models. Beyond a few likely physiological exceptions, we observed a lack of significant correlations between defense traits at both intra‐ and interspecific scales, indicating that these traits evolve independently of each other inVitisrather than forming predictable defense syndromes. We did find that investment in carbon:nitrogen (at both scales) and pearl bodies increases with proximity to the equator, demonstrating support for plant defense theory's prediction of higher investment in defenses at more equatorial environments for some, but not all, defense traits. Overall, our results challenge commonly held hypotheses about plant defense evolution, namely the concept of syndromes, by demonstrating that strong correlations between defense traits are not the prevailing pattern both across and withinVitisspecies. Our work also provides the first comprehensive evaluation of the evolutionary divergence in approaches thatVitis, a genus with significant agricultural value, have evolved to defend themselves against herbivores.
more »
« less
Ontogeny and potential function of poacher armor (Actinopterygii: Agonidae)
Abstract Many vertebrates are armored over all or part of their body. The armor may serve several functional roles including defense, offense, visual display, and signal of experience/capability. Different roles imply different tradeoffs; for example, defensive armor usually trades resistance to attack for maneuverability. The poachers (Agonidae), 47 species of scorpaeniform fishes, are a useful system for understanding the evolution and function of armor due to their variety and extent of armoring. Using publically available CT‐scan data from 27 species in 16 of 21 genera of poachers we compared the armor to axial skeletal in the mid body region. The ratio of average armor density to average skeleton density ranged from 0.77 to 1.17. From a defensive point of view, the total investment in mineralization (volume * average density) is more interesting. There was 10 times the material invested in the armor as in the endoskeleton in some small, smooth plated species, likeAspidophoroides olrikii. At the low end, some visually arresting species likePercis japonica, had ratios as low as 2:1. We categorized the extent and type (impact vs. abrasion) in 34Agonopsis vulsaacross all 35+ plates in the eight rows along the body. The ventral rows show abrasive damage along the entire length of the fish that gets worse with age. Impact damage to head and tail plates gets more severe and occurs at higher rates with age. The observed damage rates and the large investment in mineralization of the armor suggest that it is not just for show, but is a functional defensive structure. We cannot say what the armor is defense against, but the abrasive damage on the ventrum implies their benthic lifestyle involves rubbing on the substrate. The impact damage could result from predatory attacks or from intraspecific combat.
more »
« less
- PAR ID:
- 10455497
- Publisher / Repository:
- Wiley Blackwell (John Wiley & Sons)
- Date Published:
- Journal Name:
- Journal of Morphology
- Volume:
- 281
- Issue:
- 9
- ISSN:
- 0362-2525
- Format(s):
- Medium: X Size: p. 1018-1028
- Size(s):
- p. 1018-1028
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Abstract Ensuring the sustainability of forest ecosystems requires understanding the mechanisms underlying tree growth and predicting their relative influence across taxa and environments.Functional ecology posits that variation in tree growth is related to individual differences in functional traits, which serve as proxies for resource acquisition and investment strategies. However, studies of trait–growth relationships have produced inconsistent results, likely due to unaccounted factors like interspecific interactions, ontogeny, differing leaf habit strategies, and variation in resource acquisition and allocation.We investigated the utility of key functional traits as predictors of tree height growth rates in common garden experiments in the absence of interspecific interactions. We posit that trait–growth relationships vary with age and between two groups relating to leaf habit: deciduous and evergreen species.Using data from 38 tree species planted in monoculture plots across seven sites of the International Diversity Experiment Network with Trees (IDENT) in North America and Europe, we compiled height growth rates over 9 years post‐germination. We modelled growth using a Bayesian hierarchical generalized linear model incorporating four above‐ground functional traits related to resource acquisition and investment: specific leaf area (SLA), wood density (WD), leaf dry matter content (LDMC) and seed mass (SM). Improvements in predictive power due to the variation of trait effects with age and leaf habit were evaluated via alternative hypothesis‐driven models, using the Expected Log Pointwise Predictive Density (ELPD) as a performance measure.Trait effects on growth varied with age and leaf habit, shifting between positive and negative effects, reflecting changes in resource acquisition and investment strategies. The relationships between traits and growth were strongest during the first three growing seasons for deciduous species and during the seventh to the ninth for evergreen species. Accounting for age and leaf habit substantially improved predictive power.Synthesis.Traits are not consistently associated with tree growth rates but instead reflect dynamic resource acquisition and investment strategies over time and between deciduous and evergreen species. Despite this variability, our findings confirm the utility of functional traits to predict tree growth rates, especially when trait effects are considered to vary with age and leaf habit.more » « less
-
Abstract Evolutionary correlations between chemical defense and protection by mutualist bodyguards have been long predicted, but tests of these patterns remain rare. We use a phylogenetic framework to test for evolutionary correlations indicative of trade-offs or synergisms between direct defense in the form of plant secondary metabolism and indirect defense in the form of leaf domatia, across 33 species in the wild grape genus, Vitis. We also performed a bioassay with a generalist herbivore to associate our chemical phenotypes with herbivore palatability. Finally, we tested whether defensive traits correlated with the average abiotic characteristics of each species’ contemporary range and whether these correlations were consistent with plant defense theory. We found a negative evolutionary correlation between domatia size and the diversity of secondary metabolites in Vitis leaf tissue across the genus, and also that leaves with a higher diversity and richness of secondary metabolites were less palatable to a generalist herbivore, consistent with a trade-off in chemical and mutualistic defense investment. Predictions from plant defense theory were not supported by associations between investment in defense phenotypes and abiotic variables. Our work demonstrates an evolutionary pattern indicative of a trade-off between indirect and direct defense strategies across the Vitis genus.more » « less
-
ABSTRACT ObjectivesOdontoblasts lining the pulp cavity deposit dentine throughout life, meaning the volume of the pulp cavity decreases with age. Primates with more abrasive diets have relatively higher molar pulp volume in their unworn molars than those with less abrasive diets. We propose that species with more abrasive diets deposit additional dentine across their lifespans to help resist wear and extend the effective lifespan of their molars. Whereas both age and wear affect dentine deposition, it is unknown which of these two variables has the greater impact. Materials and MethodsWe measured pulp volume and calculated wear from micro‐CT scans of lower first molars of captive‐bredMacaca fascicularis(n = 13) of known age. We used reduced major axis regressions (alpha = 0.05) to test if age or wear was a better predictor of pulp volume. ResultsBoth variables have a significant negative relationship with pulp volume (age:p = 0.004,R2 = 0.546; wear:p < 0.001,R2 = 0.890). A mixed linear model of pulp volume against wear as main effect and age as covariant had a non‐significant interaction effect (p = 0.078) and confirmed that both age (p = 0.030) and wear (p = 0.004) are significantly negatively correlated with pulp volume. DiscussionResults suggest that whereas pulp volume decreases with age, wear is more strongly correlated with decreasing pulp volume. These findings have implications for interpreting odontoblast activity in response to sensory feedback and the relationship between pulp volume and diet. These results also have implications for using molar pulp volume to estimate age at death in humans.more » « less
-
Synopsis Armor is a multipurpose set of structures that has evolved independently at least 30 times in fishes. In addition to providing protection, armor can manipulate flow, increase camouflage, and be sexually dimorphic. There are potential tradeoffs in armor function: increased impact resistance may come at the cost of maneuvering ability; and ornate armor may offer visual or protective advantages, but could incur excess drag. Pacific spiny lumpsuckers (Eumicrotremus orbis) are covered in rows of odontic, cone-shaped armor whorls, protecting the fish from wave driven impacts and the threat of predation. We are interested in measuring the effects of lumpsucker armor on the hydrodynamic forces on the fish. Bigger lumpsuckers have larger and more complex armor, which may incur a greater hydrodynamic cost. In addition to their protective armor, lumpsuckers have evolved a ventral adhesive disc, allowing them to remain stationary in their environment. We hypothesize a tradeoff between the armor and adhesion: little fish prioritize suction, while big fish prioritize protection. Using micro-CT, we compared armor volume to disc area over lumpsucker development and built 3D models to measure changes in drag over ontogeny. We found that drag and drag coefficients decrease with greater armor coverage and vary consistently with orientation. Adhesive disc area is isometric but safety factor increases with size, allowing larger fish to remain attached in higher flows than smaller fish.more » « less
An official website of the United States government
