skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


This content will become publicly available on May 14, 2026

Title: Evolutionary trajectories of multiple defense traits across phylogenetic and geographic scales in Vitis
The processes driving defense trait correlations may vary within and between species based on ecological or environmental contexts. However, most studies of plant defense theory fail to address this potential for shifts in trait correlations across scales. In this work, we tested for correlations between multiple defensive traits (secondary chemistry, carbon to nitrogen ratio, domatia, leaf toughness, trichomes, and pearl bodies) across a common garden of 21Vitisspecies and eighteen genotypes of the speciesVitis ripariato identify when and where patterns of defense trait evolution persist or break down across biological scales. Additionally, we asked whetherVitisdefense trait investment correlates with environmental variables as predicted by plant defense theory, using environmental metrics for eachVitisspecies andV. ripariagenotype from the GBIF and WorldClim databases. We tested for correlations between defense trait investment, herbivore palatability, and environmental variables using phylogenetically informed models. Beyond a few likely physiological exceptions, we observed a lack of significant correlations between defense traits at both intra‐ and interspecific scales, indicating that these traits evolve independently of each other inVitisrather than forming predictable defense syndromes. We did find that investment in carbon:nitrogen (at both scales) and pearl bodies increases with proximity to the equator, demonstrating support for plant defense theory's prediction of higher investment in defenses at more equatorial environments for some, but not all, defense traits. Overall, our results challenge commonly held hypotheses about plant defense evolution, namely the concept of syndromes, by demonstrating that strong correlations between defense traits are not the prevailing pattern both across and withinVitisspecies. Our work also provides the first comprehensive evaluation of the evolutionary divergence in approaches thatVitis, a genus with significant agricultural value, have evolved to defend themselves against herbivores.  more » « less
Award ID(s):
2236747
PAR ID:
10603873
Author(s) / Creator(s):
;
Publisher / Repository:
Ecography
Date Published:
Journal Name:
Ecography
ISSN:
0906-7590
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract Evolutionary correlations between chemical defense and protection by mutualist bodyguards have been long predicted, but tests of these patterns remain rare. We use a phylogenetic framework to test for evolutionary correlations indicative of trade-offs or synergisms between direct defense in the form of plant secondary metabolism and indirect defense in the form of leaf domatia, across 33 species in the wild grape genus, Vitis. We also performed a bioassay with a generalist herbivore to associate our chemical phenotypes with herbivore palatability. Finally, we tested whether defensive traits correlated with the average abiotic characteristics of each species’ contemporary range and whether these correlations were consistent with plant defense theory. We found a negative evolutionary correlation between domatia size and the diversity of secondary metabolites in Vitis leaf tissue across the genus, and also that leaves with a higher diversity and richness of secondary metabolites were less palatable to a generalist herbivore, consistent with a trade-off in chemical and mutualistic defense investment. Predictions from plant defense theory were not supported by associations between investment in defense phenotypes and abiotic variables. Our work demonstrates an evolutionary pattern indicative of a trade-off between indirect and direct defense strategies across the Vitis genus. 
    more » « less
  2. Abstract Introduced species may homogenize biotic communities. Whether this homogenization can erase latitudinal patterns of species diversity and composition has not been well studied. We examined this by comparing nematode and microbial communities in stands of nativePhragmites australisand exoticSpartina alterniflorain coastal wetlands across 18° of latitude in China. We found clear latitudinal clines in nematode diversity and functional composition, and in microbial composition, for soils collected from nativeP. australis. These latitudinal patterns were weak or absent for soils collected from nearby stands of the exoticS. alterniflora. Climatic and edaphic variables varied across latitude in similar ways in both community types. InP. australisthere were strong correlations between community structure and environmental variables, whereas inS. alterniflorathese correlations were weak. These results suggest that the invasion ofS. alterniflorainto the Chinese coastal wetlands has caused profound biotic homogenization of soil communities across latitude. We speculate that the variation inP. australisnematode and microbial communities across latitude is primarily driven by geographic variation in plant traits, but that such variation in plant traits is largely lacking for the recently introduced exoticS. alterniflora. These results indicate that widespread exotic species can homogenize nematode communities at large spatial scales. 
    more » « less
  3. Abstract Soil nutrients and water availability are strong drivers of tropical tree species distribution across scales. However, the physiological mechanisms underlying environmental filtering along these gradients remain incompletely understood. Previous studies mostly focused on univariate variation in structural traits, but a more integrative approach combining multiple physiological traits is needed to fully portray species functional strategies.We measured nine leaf functional traits related to trees' resource capture and hydraulic strategies for 552 individuals belonging to 21 tropical tree species across an environmental gradient in Amazonian forests. Our sampling included generalist and specialist species fromterra firme(TF) and seasonally flooded (SF) forests. We tested the influence of the topographic wetness index, a proxy for soil moisture and nutrient gradients, on each trait separately and on the trait integration through multivariate indices computed from the eigenvalues of a principal component analysis on the traits of the species. Finally, we evaluated intraspecific trait variability (ITV) for generalists and specialists by calculating the coefficient of variation for each trait.Results showed that (1) the environment had a greater influence on trait syndromes than single trait variation. Moreover, (2) SF specialist species expressed a stronger leaf trait coordination than TF specialist species. Furthermore, (3) the ability of generalist species to occupy a broader range of environments was not reflected by a larger ITV than specialist species but by the capacity to change trait coordination across environments.Our work highlights the need to investigate functional strategies as multidimensional syndromes in physiological trait space to fully understand and predict species distribution along environmental gradients. Read the freePlain Language Summaryfor this article on the Journal blog. 
    more » « less
  4. Abstract The utility of plant functional traits for predictive ecology relies on our ability to interpret trait variation across multiple taxonomic and ecological scales. Using extensive data sets of trait variation within species, across species and across communities, we analysed whether and at what scales leaf economics spectrum (LES) traits show predicted trait–trait covariation. We found that most variation inLEStraits is often, but not universally, at high taxonomic levels (between families or genera in a family). However, we found that trait covariation shows distinct taxonomic scale dependence, with some trait correlations showing opposite signs within vs. across species.LEStraits responded independently to environmental gradients within species, with few shared environmental responses across traits or across scales. We conclude that, at small taxonomic scales, plasticity may obscure or reverse the broad evolutionary linkages between leaf traits, meaning that variation inLEStraits cannot always be interpreted as differences in resource use strategy. 
    more » « less
  5. Abstract Effects of global climate change on population persistence are often mediated by life‐history traits of individuals, especially the timing of somatic growth, reproductive development, and reproduction itself. These traits can vary among age groups and between the sexes, a result of differential life‐history tactics and levels of lifetime reproductive investment. Unfortunately, the trait data necessary for revealing sex‐specific breeding behaviors and use of breeding cues over reasonably large geographic areas remain sparse for most taxa. In this study, we assembled and analyzed a new reproductive trait base for the North American deer mouse (Peromyscus maniculatus) from digitized natural history specimens and field censuses. We used the data to reconstruct sex‐specific breeding phenologies and their drivers within and among North American ecoregions. Male and female phenologies varied across the geographic range of this species, with discordance in timing and intensity being highest in regions of lower seasonality (and longer breeding seasons). Reliance on environmental variables as breeding cues also appeared to vary in a sex‐specific manner, being most similar for photoperiod and least similar for temperature (positive male response and negative female response); in addition, model validation indicated that phenological models generalized better for males than for females. Finally, our individual‐level trait data also show that male reproductive investment (quantified as relative testis size) varies across the vastly different abiotic and social (i.e., female breeding) contexts studied here. By harmonizing across a broad set of digital data resources, we demonstrate the potential to uncover drivers of phenological variation within species and inform global change predictions at multiple scales of biological organization. 
    more » « less