skip to main content


Title: Derivative-Based Koopman Operators for Real-Time Control of Robotic Systems
This paper presents a generalizable methodology for data-driven identification of nonlinear dynamics that bounds the model error in terms of the prediction horizon and the magnitude of the derivatives of the system states. Using higher order derivatives of general nonlinear dynamics that need not be known, we construct a Koopman operator-based linear representation and utilize Taylor series accuracy analysis to derive an error bound. The resulting error formula is used to choose the order of derivatives in the basis functions and obtain a data-driven Koopman model using a closed-form expression that can be computed in real time. Using the inverted pendulum system, we illustrate the robustness of the error bounds given noisy measurements of unknown dynamics, where the derivatives are estimated numerically. When combined with control, the Koopman representation of the nonlinear system has marginally better performance than competing nonlinear modeling methods, such as SINDy and NARX. In addition, as a linear model, the Koopman approach lends itself readily to efficient control design tools, such as LQR, whereas the other modeling approaches require nonlinear control methods. The efficacy of the approach is further demonstrated with simulation and experimental results on the control of a tail-actuated robotic fish. Experimental results show that the proposed data-driven control approach outperforms a tuned PID (Proportional Integral Derivative) controller and that updating the data-driven model online significantly improves performance in the presence of unmodeled fluid disturbance. This paper is complemented with a video: https://youtu.be/9 wx0tdDta0.  more » « less
Award ID(s):
1717951 1715714
NSF-PAR ID:
10302016
Author(s) / Creator(s):
; ; ;
Date Published:
Journal Name:
IEEE Transactions on Robotics
ISSN:
1552-3098
Page Range / eLocation ID:
1 to 10
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. This paper presents a data-driven methodology for linear embedding of nonlinear systems. Utilizing structural knowledge of general nonlinear dynamics, the authors exploit the Koopman operator to develop a systematic, data-driven approach for constructing a linear representation in terms of higher order derivatives of the underlying nonlinear dynamics. With the linear representation, the nonlinear system is then controlled with an LQR feedback policy, the gains of which need to be calculated only once. As a result, the approach enables fast control synthesis. We demonstrate the efficacy of the approach with simulations and experimental results on the modeling and control of a tail-actuated robotic fish and show that the proposed policy is comparable to backstepping control. To the best of our knowledge, this is the first experimental validation of Koopman-based LQR control. 
    more » « less
  2. Interest in soft robotics has increased in recent years due to their potential in a myriad of applications. A wide variety of soft robots has emerged, including bio-inspired robotic swimmers such as jellyfish, rays, and robotic fish. However, the highly nonlinear fluid-structure interactions pose considerable challenges in the analysis, modeling, and feedback control of these soft robotic swimmers. In particular, developing models that are of high fidelity but are also amenable to control for such robots remains an open problem. In this work, we pro- pose a data-driven approach that exploits Koopman operators to obtain a linear representation of the soft swimmer dynamics. Specifically, two methodologies are explored for obtaining the basis functions of the the operator, one based on data-based derivatives estimated using high-gain observers, and the other based on the dynamics structure of a tail-actuated rigid-body robotic fish. The resulting approximate finite-dimensional operators are trained and evaluated using data from high-fidelity CFD simulations that incorporate fluid-structure interactions. Validation results demonstrate that, while both methods are promising in producing control-oriented models, the approach based on derivative estimates shows higher accuracy in state prediction. 
    more » « less
  3. Abstract

    Koopman operators are infinite‐dimensional operators that globally linearize nonlinear dynamical systems, making their spectral information valuable for understanding dynamics. However, Koopman operators can have continuous spectra and infinite‐dimensional invariant subspaces, making computing their spectral information a considerable challenge. This paper describes data‐driven algorithms with rigorous convergence guarantees for computing spectral information of Koopman operators from trajectory data. We introduce residual dynamic mode decomposition (ResDMD), which provides the first scheme for computing the spectra and pseudospectra of general Koopman operators from snapshot data without spectral pollution. Using the resolvent operator and ResDMD, we compute smoothed approximations of spectral measures associated with general measure‐preserving dynamical systems. We prove explicit convergence theorems for our algorithms (including for general systems that are not measure‐preserving), which can achieve high‐order convergence even for chaotic systems when computing the density of the continuous spectrum and the discrete spectrum. Since our algorithms have error control, ResDMD allows aposteri verification of spectral quantities, Koopman mode decompositions, and learned dictionaries. We demonstrate our algorithms on the tent map, circle rotations, Gauss iterated map, nonlinear pendulum, double pendulum, and Lorenz system. Finally, we provide kernelized variants of our algorithms for dynamical systems with a high‐dimensional state space. This allows us to compute the spectral measure associated with the dynamics of a protein molecule with a 20,046‐dimensional state space and compute nonlinear Koopman modes with error bounds for turbulent flow past aerofoils with Reynolds number >105that has a 295,122‐dimensional state space.

     
    more » « less
  4. This paper presents an active learning strategy for robotic systems that takes into account task information, enables fast learning, and allows control to be readily synthesized by taking advantage of the Koopman operator representation. We first motivate the use of representing nonlinear systems as linear Koopman operator systems by illustrating the improved model-based control performance with an actuated Van der Pol system. Information-theoretic methods are then applied to the Koopman operator formulation of dynamical systems where we derive a controller for active learning of robot dynamics. The active learning controller is shown to increase the rate of information about the Koopman operator. In addition, our active learning controller can readily incorporate policies built on the Koopman dynamics, enabling the benefits of fast active learning and improved control. Results using a quadcopter illustrate single-execution active learning and stabilization capabilities during free-fall. The results for active learning are extended for automating Koopman observables and we implement our method on real robotic systems. 
    more » « less
  5. Modularized Koopman bilinear form (M-KBF) is presented to model and predict the transient dynamics of microgrids in the presence of disturbances. As a scalable data-driven approach, M-KBF divides the identification and prediction of the high-dimensional nonlinear system into the individual study of subsystems, and thus, alleviates the difficulty of intensively handling high volume data and overcomes the curse of dimensionality. For each subsystem, Koopman bilinear form is established to efficiently identify its model by identifying isotypic eigenfunctions via the Extended Dynamic Mode Decomposition (EDMD) method with an eigenvalue-based order truncation. Extensive tests show that M-KBF can provide accurate transient dynamics prediction for the nonlinear microgrids and verify the plug-and-play modeling and prediction function, which offers a potent tool for identifying high-dimensional systems with reconfiguration feature. The modularity feature of M-KBF enables the provision of fast and precise prediction for the power grid operation and control, paving the way towards online applications. 
    more » « less