Microbes and sunlight convert terrigenous dissolved organic matter (DOM) in surface waters to greenhouse gases. Prior studies show contrasting results about how biological and photochemical processes interact to contribute to the degradation of DOM. In this study, DOM leached from the organic layer of tundra soil was exposed to natural sunlight or kept in the dark, incubated in the dark with the natural microbial community, and analyzed for gene expression and DOM chemical composition. Microbial gene expression (metatranscriptomics) in light and dark treatments diverged substantially after 4 hours. Gene expression suggested that sunlight exposure of DOM initially stimulated microbial growth by (a) replacing the function of enzymes that degrade higher molecular weight DOM such as enzymes for aromatic carbon degradation, oxygenation, and decarboxylation, and (b) releasing low molecular weight compounds and inorganic nutrients from DOM. However, growth stimulation following sunlight exposure of DOM came at a cost. Sunlight depleted the pool of aromatic compounds that supported microbial growth in the dark treatment, ultimately causing slower growth in the light treatment over 5 days. These first measurements of microbial metatranscriptomic responses to photo-alteration of DOM provide a mechanistic explanation for how sunlight exposure of terrigenous DOM alters microbial processing and respiration of DOM.
more »
« less
Experimental metatranscriptomics reveals the costs and benefits of dissolved organic matter photo‐alteration for freshwater microbes
Summary Microbes and sunlight convert terrigenous dissolved organic matter (DOM) in surface waters to greenhouse gases. Prior studies show contrasting results about how biological and photochemical processes interact to contribute to the degradation of DOM. In this study, DOM leached from the organic layer of tundra soil was exposed to natural sunlight or kept in the dark, incubated in the dark with the natural microbial community, and analysed for gene expression and DOM chemical composition. Microbial gene expression (metatranscriptomics) in light and dark treatments diverged substantially after 4 h. Gene expression suggested that sunlight exposure of DOM initially stimulated microbial growth by (i) replacing the function of enzymes that degrade higher molecular weight DOM such as enzymes for aromatic carbon degradation, oxygenation, and decarboxylation, and (ii) releasing low molecular weight compounds and inorganic nutrients from DOM. However, growth stimulation following sunlight exposure of DOM came at a cost. Sunlight depleted the pool of aromatic compounds that supported microbial growth in the dark treatment, ultimately causing slower growth in the light treatment over 5 days. These first measurements of microbial metatranscriptomic responses to photo‐alteration of DOM provide a mechanistic explanation for how sunlight exposure of terrigenous DOM alters microbial processing and respiration of DOM.
more »
« less
- PAR ID:
- 10455508
- Publisher / Repository:
- Wiley-Blackwell
- Date Published:
- Journal Name:
- Environmental Microbiology
- Volume:
- 22
- Issue:
- 8
- ISSN:
- 1462-2912
- Format(s):
- Medium: X Size: p. 3505-3521
- Size(s):
- p. 3505-3521
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Abstract The interconnected estuarine complex of the Altamaha River and adjacent sounds located in Georgia (USA) functions as a hotspot for organic matter transformation as it is transported to the Atlantic Ocean. Here, we investigated how dissolved organic matter (DOM) composition changes both spatially and seasonally along the estuary and how it influences bacterial processing. Surface samples were collected during high tide at fifteen stations throughout the estuary in April, July, October 2017, and January 2018. Bulk, optical, and molecular analyses were conducted on samples before and after dark incubations to assess DOM sources and transformation patterns in the system. The dominant driver of change in DOM composition was found to be the terrigenous‐marine gradient in organic matter sources. Six distinct clusters were identified based on the terrigenous signature of the DOM pool, explaining 45% of the variance in DOM composition in the system. Bacterial consumption of dissolved organic carbon (DOC) was strongly influenced by DOM composition, with increased degradation rates for DOM with a larger terrigenous character. However, changes in optical properties suggested that less aromatic DOM that co‐varied with the terrigenous material was preferentially degraded. The passage of Hurricane Irma in September 2017 resulted in a 27% ± 7% increase in DOC content, likely due to inundation associated with storm surge and increased local precipitation, and DOC biodegradation was 17% ± 8% higher than during summer. These effects lasted for at least one month after the storm, revealing that hurricanes can have a large impact on DOM composition and cycling in coastal systems.more » « less
-
Dissolved organic matter (DOM) plays an important role in carbon cycling in natural waters. The processing of DOM in these waters can occur via photooxidation, or interaction with sunlight. This processing can lead to the production of CO2, and also the alteration of organic compounds that make up DOM. It is likely that the extent of photooxidation is at least partially determined by the chemical composition of DOM. Fourier-transform ion cyclotron resonance mass spectrometry (FT-ICR MS) was used to characterize the dissolved organic matter at the molecular level for all water samples, both before and after light exposure to better understand the photooxidation of DOM. Chemical formulas were assigned to mass to generated mass to charge ratios using a custom script in R, resulting in a list of chemical formula assignments for each DOM sample, at multiple light exposure time points.more » « less
-
Abstract Dissolved organic matter (DOM) is a large and complex mixture of compounds with source inputs that differ with location, season, and environmental conditions. Here, we investigated drivers of DOM composition changes in a marsh‐dominated estuary off the southeastern United States. Monthly water samples were collected at a riverine and estuarine site from September 2015 to September 2016, and bulk, optical, and molecular analyses were conducted on samples before and after dark incubations. Results showed that river discharge was the primary driver changing the DOM composition at the mouth of the Altamaha River. For discharge higher than ~150 m3/s, dissolved organic carbon (DOC) concentrations and the terrigenous character of the DOM increased approximately linearly with river flow. For low discharge conditions, a clear signature of salt marsh‐derived compounds was observed in the river. At the head of Sapelo Sound, changes in DOM composition were primarily driven by river discharge and possibly by summer algae blooms. Microbial consumption of DOC was larger during periods of high discharge at both sites, potentially due to the higher mobilization and influx of fresh material to the system. The Georgia coast was hit by Hurricane Matthew in October 2016, which resulted in a large input of carbon to the estuary. The DOC concentration was ~2 times higher and DOM composition was more aromatic with a stronger terrigenous signature compared to the seasonal maximum observed earlier in the year during peak river discharge conditions. This suggests that extreme events notably impact DOM quantity and quality in estuarine regions.more » « less
-
Abstract Tidal wetlands are a significant source of dissolved organic matter (DOM) to coastal ecosystems, which impacts nutrient cycling, light exposure, carbon dynamics, phytoplankton activity, microbial growth, and ecosystem productivity. There is a wide variety of research on the properties and sources of DOM; however, little is known about the characteristics and degradation of DOM specifically sourced from tidal wetland plants. By conducting microbial and combined UV exposure and microbial incubation experiments of leachates from fresh and senescent plants in Chesapeake Bay wetlands, it was demonstrated that senescent material leached more dissolved organic carbon (DOC) than fresh material (77.9 ± 54.3 vs 21.6 ± 11.8 mg DOC L−1, respectively). Degradation followed an exponential decay pattern, and the senescent material averaged 50.5 ± 9.45% biodegradable DOC (%BDOC), or the loss of DOC due to microbial degradation. In comparison, the fresh material averaged a greater %BDOC (72.6 ± 19.2%). Percent remaining of absorbance (83.3 ± 26.7% for fresh, 90.1 ± 10.8% for senescent) was greater than percent remaining DOC, indicating that colored DOM is less bioavailable than non-colored material. Concentrations of DOC leached, %BDOC, and SUVA280 varied between species, indicating that the species composition of the marsh likely impacts the quantity and quality of exported DOC. Comparing the UV + microbial to the microbial only incubations did not reveal any clear effects on %BDOC but UV exposure enhanced loss of absorbance during subsequent dark incubation. These results demonstrate the impacts of senescence on the quality and concentration of DOM leached from tidal wetland plants, and that microbes combined with UV impact the degradation of this DOM differently from microbes alone.more » « less
An official website of the United States government
