Summary Evolutionary history plays a key role driving patterns of trait variation across plant species. For scaling and modeling purposes, grass species are typically organized into C3vs C4plant functional types (PFTs). Plant functional type groupings may obscure important functional differences among species. Rather, grouping grasses by evolutionary lineage may better represent grass functional diversity.We measured 11 structural and physiological traitsin situfrom 75 grass species within the North American tallgrass prairie. We tested whether traits differed significantly among photosynthetic pathways or lineages (tribe) in annual and perennial grass species.Critically, we found evidence that grass traits varied among lineages, including independent origins of C4photosynthesis. Using a rigorous model selection approach, tribe was included in the top models for five of nine traits for perennial species. Tribes were separable in a multivariate and phylogenetically controlled analysis of traits, owing to coordination of important structural and ecophysiological characteristics.Our findings suggest grouping grass species by photosynthetic pathway overlooks variation in several functional traits, particularly for C4species. These results indicate that further assessment of lineage‐based differences at other sites and across other grass species distributions may improve representation of C4species in trait comparison analyses and modeling investigations.
more »
« less
Morphological and physiological traits in relation to carbon balance in a diverse clade of dryland mosses
Abstract Plant functional trait analyses have focused almost exclusively on vascular plants, but bryophytes comprise ancient and diverse plant lineages that have widespread global distributions and important ecological functions in terrestrial ecosystems. We examined a diverse clade of dryland mosses,Syntrichia, and studied carbon balance during a precipitation event (C‐balance), a functional trait related to physiological functioning, desiccation tolerance, survival, and ecosystem carbon and nitrogen cycling. We examined variability in C‐balance among 14 genotypes ofSyntrichiaand measured an additional 10 physiological and 13 morphological traits at the cell, leaf, shoot, and clump level. C‐balance varied 20‐fold among genotypes, and highest C‐balances were associated with long, narrow leaves with awns, and small cells with thick cell walls, traits that may influence water uptake and retention during a precipitation event. Ordination analyses revealed that the axis most strongly correlated with C‐balance included the maximum chlorophyll fluorescence,Fm, indicating the importance of photosystem II health for C exchange. C‐balance represents a key functional trait in bryophytes, but its measurement is time intensive and not feasible to measure on large scales. We propose two models (using physiological and morphological traits) to predict C‐balance, whereby identifying simpler to measure traits for trait databases.
more »
« less
- PAR ID:
- 10455513
- Publisher / Repository:
- Wiley-Blackwell
- Date Published:
- Journal Name:
- Plant, Cell & Environment
- Volume:
- 42
- Issue:
- 11
- ISSN:
- 0140-7791
- Page Range / eLocation ID:
- p. 3140-3151
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Humbert, Jean-François (Ed.)Diverse phytoplankton modulate the coupling between the ocean carbon and nutrient cycles through life-history traits such as cell size, elemental quotas, and ratios. Biodiversity is mostly considered at broad functional levels, but major phytoplankton lineages are themselves highly diverse. As an example,Synechococcusis found in nearly all ocean regions, and we demonstrate contains extensive intraspecific variation. Here, we grew four closely relatedSynechococcusisolates in serially transferred cultures across a range of temperatures (16–25°C) to quantify for the relative role of intraspecific trait variation vs. environmental change. We report differences in cell size (p<0.01) as a function of strain and clade (p<0.01). The carbon (QC), nitrogen (QN), and phosphorus (QP) cell quotas all increased with cell size. Furthermore, cell size has an inverse relationship to growth rate. Within our experimental design, temperature alone had a weak physiological effect on cell quota and elemental ratios. Instead, we find systemic intraspecific variance of C:N:P, with cell size and N:P having an inverse relationship. Our results suggest a key role for intraspecific life history traits in determining elemental quotas and stoichiometry. Thus, the extensive biodiversity harbored within many lineages may modulate the impact of environmental change on ocean biogeochemical cycles.more » « less
-
Abstract PremiseMechanistic models using stomatal traits and leaf carbon isotope ratios to reconstruct atmospheric carbon dioxide (CO2) concentrations (ca) are important to understand the Phanerozoic paleoclimate. However, methods for preparing leaf cuticles to measure stomatal traits have not been standardized. MethodsThree people measured the stomatal density and index, guard cell length, guard cell pair width, and pore length of leaves from the sameGinkgo biloba,Quercus alba, andZingiber miogaleaves growing at known CO2levels using four preparation methods: fluorescence on cleared leaves, nail polish, dental putty on fresh leaves, and dental putty on dried leaves. ResultsThere are significant differences between trait measurements from each method. Modeledcacalculations are less sensitive to method than individual traits; however, the choice of assumed carbon isotope fractionation also impacted the accuracy of the results. DiscussionWe show that there is not a significant difference betweencaestimates made using any of the four methods. Further study is needed on the fractionation due to carboxylation of ribulose bisphosphate (RuBP) in individual plant species before use as a paleo‐CO2barometer and to refine estimates based upon widely applied taxa (e.g.,Ginkgo). Finally, we recommend that morphological measurements be made by multiple observers to reduce the effect of individual observational biases.more » « less
-
Abstract Most earth system models fail to capture the seasonality of carbon fluxes in radiation‐limited tropical evergreen forests (TEF) in the Amazon. Kim et al. (2012,https://doi.org/10.1111/j.1365-2486.2011.02629.x) first statistically incorporated a light‐controlled phenology module into an ecosystem model to improve carbon flux simulations at one TEF site. However, it is not clear how their approach can be extended to other TEF sites with different climatic conditions. Here we evaluated temporal variability in plant functional traits at three different TEF sites using a data‐conditioned stochastic parameterization method. We showed that previously studied links—between seasonal photosynthetically active radiation (PAR) and the traitsVcmax25and leaf longevity—occur across sites. We further determined that seasonal PAR could similarly drive variations in the stomatal conductance slope parameter. Differences found in temporal trait estimates among sites indicate that dynamic trait parameters cannot be applied uniformly over space, but it may be possible to extrapolate them based on climatic factors. Motivated by recent observations that physiological capacity develops as leaves mature, we built new regression models for predicting traits that not only include PAR but also an autoregressive lag term to capture observed physiological delays behind PAR‐driven phenology shifts. With our stochastic parameterization, we predicted the three sites to be carbon neutral or carbon sinks under the RCP 8.5 future climate scenario. In contrast, projections using standard static trait parameters show most of the Amazonian TEF region becoming a carbon source. We further approximated that variable traits may allow at least a third of the radiation‐limited TEF region in the Amazon to serve as a future net carbon sink.more » « less
-
Abstract Root‐based functional traits are relatively overlooked as drivers of savanna plant community dynamics, an important gap in water‐limited ecosystems. Recent work has shed light on patterns of trait coordination in roots, but less is known about the relationship between root functional traits, water acquisition, and plant demographic rates. Here, we investigated how fine‐root vascular and morphological traits are related in two dominant PFTs (C3trees and C4grasses from the savanna biome), whether root traits can predict plant relative growth rate (RGR), and whether root trait multivariate relationships differ in trees and grasses. We used root data from 21 tree and 18 grass species grown under greenhouse conditions, and quantified a suite of vascular and morphological root traits. We used a principal components analysis (PCA) to identify common axes of trait variation, compared trait correlation matrices between the two PFTs, and investigated the relationship between PCA axes and individual traits and RGR. We found that there was no clear single axis integrating vascular and morphological traits, but found that vascular anatomy predicted RGR in both trees and grasses. Trait correlation matrices differed in trees and grasses, suggesting potentially divergent patterns of trait coordination between the two functional types. Our results suggested that, despite differences in trait relationships between trees and grasses, root conductivity may constrain maximum growth rate in both PFTs, highlighting the critical role that water relations play in savanna vegetation dynamics and suggesting that root water transport capacity is an important predictor of plant performance in the savanna biome.more » « less
An official website of the United States government
