skip to main content


Title: The Distribution and Redox Speciation of Iodine in the Eastern Tropical North Pacific Ocean
Abstract

The distributions of iodate (IO3), iodide (I), nitrite (NO2), and oxygen (O2) were determined on two zonal transects and one meridional transect in the Eastern Tropical North Pacific (ETNP) in 2018. Iodine is a useful tracer of in situ redox transformations and inputs within the water column from continental margins. In oxygenated waters, iodine is predominantly present as oxidized iodate. In the oxygen deficient zone (ODZ) in the ETNP, a substantial fraction is reduced to iodide, with the highest iodide concentrations coincident with the secondary nitrite maxima. These features resemble ODZs in the Arabian Sea and Eastern Tropical South Pacific (ETSP). Maxima in iodide and nitrite were associated with a specific water mass, referred to as the 13 °C Water, the same water mass that contains the highest concentrations of iodide within the ETSP. Physical processes leading to patchiness in the 13 °C Water relative to other water masses could account for the patchiness frequently observed in iodide and nitrite, probably reflecting subsurface mesoscale features such as eddies. Throughout much of the ETNP ODZ, iodine concentrations were higher than the mean oceanic value. This “excess iodine” is attributed to lateral inputs from sedimentary margins. Excess iodine maxima are centered within a potential density of 26.2–26.6 kg/m3, a density range that intersects with reducing shelf sediments and is almost identical to the ETSP. Evidently, margin input processes are significant throughout the basin and can influence the nitrogen and iron cycles as well, as in the ETSP.

 
more » « less
Award ID(s):
1636332 1829406
PAR ID:
10455517
Author(s) / Creator(s):
 ;  ;  ;  ;  
Publisher / Repository:
DOI PREFIX: 10.1029
Date Published:
Journal Name:
Global Biogeochemical Cycles
Volume:
34
Issue:
2
ISSN:
0886-6236
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    Oxygen‐deficient zones (ODZs) play an important role in the distribution and cycling of trace metals in the ocean, as important sources of metals including Fe and Mn, and also as possible sinks of chalcophile elements such as Cd. The Eastern Tropical North Pacific (ETNP) ODZ is one of the three largest ODZs worldwide. Here, we present results from two sectional surveys through the ETNP ODZ conducted in 2018, providing high‐resolution concentrations of several metals, along with complimentary measurements of nutrients and iodine speciation. We show that samples obtained from the ship's regular rosette are clean for Cd, Mn, Ni, and light rare earth elements, while uncontaminated Fe, Zn, Cu, and Pb samples cannot be obtained without a special trace‐metal clean sampling system. Our results did not show evidence of Cd sulfide precipitation, even within the most oxygen‐depleted water mass. High Mn and Ce concentrations and high Ce anomalies were observed in low‐oxygen seawater. These maxima were most pronounced in the upper water column below the oxycline, coincident with the secondary nitrite maxima and the lowest oxygen concentrations, in what is generally considered the most microbially active part of the water column. High Mn and Ce features were also coincident with maxima in excess iodine, a tracer of shelf sediment sources. Mn and Ce maxima were most prominent within the 13°C water mass, spanning a density horizon that enhances isopycnal transport from the shelf sediments, resulting in transport of Mn and Ce at least 2500 km offshore.

     
    more » « less
  2. Abstract

    The distributions of iodate and iodide were measured along the GEOTRACES GP15 meridional transect at 152°W from the shelf of Alaska to Papeete, Tahiti. The transect included oxygenated waters near the shelf of Alaska, the full water column in the central basin in the North Pacific Basin, the upper water column spanning across seasonally mixed regimes in the north, oligotrophic regimes in the central gyre, and the equatorial upwelling. Iodide concentrations are highest in the permanently stratified tropical mixed layers, which reflect accumulation due to light‐dependent biological processes, and decline rapidly below the euphotic zone. Vertical mixing coefficients (Kz), derived from complementary7Be data, enabled iodide oxidation rates to be estimated at two stations. Iodide half‐lives of 3–4 years show the importance of seasonal mixing processes in explaining north‐south differences in the transect, and also contribute to the decrease in iodide concentrations with depth below the mixed layer. These estimated half‐lives are consistent with a recent global iodine model. No evidence was found for significant inputs of iodine from the Alaskan continental margin, but there is a significant enrichment of iodide in bottom waters overlying deep sea sediments from the interior of the basin.

     
    more » « less
  3. Abstract

    Oceanic oxygen deficient zones (ODZs) influence global biogeochemical cycles in a variety of ways, most notably by acting as a sink for fixed nitrogen (Codispoti et al. 2001). Optimum multiparameter analysis of data from two cruises in the Eastern Tropical North Pacific (ETNP) was implemented to develop a water mass analysis for the large ODZ in this region. This analysis reveals that the most pronounced oxygen deficient conditions are within the 13°C water (13CW) mass, which is distributed via subsurface mesoscale features such as eddies branching from the California Undercurrent. Nitrite accumulates within these eddies and slightly below the core of the 13CW. This water mass analysis also reveals that the 13CW and deeper Northern Equatorial Pacific Intermediate Water (NEPIW) act as the two Pacific Equatorial source waters to the California Current System. The Equatorial Subsurface Water and Subtropical Subsurface Water are synonymous with the 13CW and this study refers to this water mass as the 13CW based on its history. Since the 13CW has been found to dominate the most pronounced oxygen deficient conditions within the Eastern Tropical South Pacific ODZ and the Peru‐Chile Undercurrent, the 13CW and the NEPIW define boundaries for oxygen minimum conditions across the entire eastern Pacific Ocean.

     
    more » « less
  4. Abstract

    Processes controlling dissolved barium (dBa) were investigated along the GEOTRACES GA03 North Atlantic and GP16 Eastern Tropical Pacific transects, which traversed similar physical and biogeochemical provinces. Dissolved Ba concentrations are lowest in surface waters (∼35–50 nmol kg−1) and increase to 70–80 and 140–150 nmol kg−1in deep waters of the Atlantic and Pacific transects, respectively. Using water mass mixing models, we estimate conservative mixing that accounts for most of dBa variability in both transects. To examine nonconservative processes, particulate excess Ba (pBaxs) formation and dissolution rates were tracked by normalizing particulate excess230Th activities. Th‐normalized pBaxsfluxes, with barite as the likely phase, have subsurface maxima in the top 1,000 m (∼100–200 μmol m−2 year−1average) in both basins. Barite precipitation depletes dBa within oxygen minimum zones from concentrations predicted by water mass mixing, whereas inputs from continental margins, particle dissolution in the water column, and benthic diffusive flux raise dBa above predications. Average pBaxsburial efficiencies along GA03 and GP16 are ∼37% and 17%–100%, respectively, and do not seem to be predicated on barite saturation indices in the overlying water column. Using published values, we reevaluate the global freshwater dBa river input as 6.6 ± 3.9 Gmol year−1. Estuarine mixing processes may add another 3–13 Gmol year−1. Dissolved Ba inputs from broad shallow continental margins, previously unaccounted for in global marine summaries, are substantial (∼17 Gmol year−1), exceeding terrestrial freshwater inputs. Revising river and shelf dBa inputs may help bring the marine Ba isotope budget more into balance.

     
    more » « less
  5. Abstract

    Nitrite is a key intermediate during fixed nitrogen loss in the ocean, and it accumulates within marine Oxygen Deficient Zones (ODZ). ODZs are vast subsurface regions where nitrate is the dominant electron acceptor, and these regions host approximately 50% of the fixed nitrogen loss in the world's oceans. Nitrite accumulates in these waters, and recent research has discovered substantial reoxidation of nitrite back to nitrate, a significant process in the global nitrogen cycle. Partitioning between reduction and oxidation determines if marine fixed nitrogen is lost or recycled. Investigations into nitrite oxidation typically rely on results from incubations, which limits the spatiotemporal sampling coverage. Using basin‐scale data, we analyzed the ratios of nutrient regeneration within the three water masses that feed the Eastern Tropical North Pacific (ETNP) ODZ. Deviations in the ratios of nutrient regeneration from Redfield stoichiometry indicated prolific nitrite reoxidation across this region. We estimate that 79 ± 7% of the nitrite produced in the ODZ between the 26.2 and 26.4 kg m−3isopycnals is reoxidized, whereas 54 ± 2% of the nitrite produced between the 26.7 and 26.9 kg m−3isopycnals is reoxidized. Our analysis also illustrates discrete “metabolic switching points” from primarily aerobic to primary anaerobic processes, which occur in each water mass. We applied water mass analysis to repeat cruises on the WOCE P18 line from Baja California to 10°N, which revealed high spatiotemporal variability in nitrite reoxidation. These results confirm previous measurements of significant fixed nitrogen recycling across the ETNP; however, our analysis enables high‐resolution estimates of this process.

     
    more » « less