skip to main content


Search for: All records

Award ID contains: 1829406

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract

    The distributions of iodate and iodide were measured along the GEOTRACES GP15 meridional transect at 152°W from the shelf of Alaska to Papeete, Tahiti. The transect included oxygenated waters near the shelf of Alaska, the full water column in the central basin in the North Pacific Basin, the upper water column spanning across seasonally mixed regimes in the north, oligotrophic regimes in the central gyre, and the equatorial upwelling. Iodide concentrations are highest in the permanently stratified tropical mixed layers, which reflect accumulation due to light‐dependent biological processes, and decline rapidly below the euphotic zone. Vertical mixing coefficients (Kz), derived from complementary7Be data, enabled iodide oxidation rates to be estimated at two stations. Iodide half‐lives of 3–4 years show the importance of seasonal mixing processes in explaining north‐south differences in the transect, and also contribute to the decrease in iodide concentrations with depth below the mixed layer. These estimated half‐lives are consistent with a recent global iodine model. No evidence was found for significant inputs of iodine from the Alaskan continental margin, but there is a significant enrichment of iodide in bottom waters overlying deep sea sediments from the interior of the basin.

     
    more » « less
  2. Abstract

    The distributions of iodate (IO3), iodide (I), nitrite (NO2), and oxygen (O2) were determined on two zonal transects and one meridional transect in the Eastern Tropical North Pacific (ETNP) in 2018. Iodine is a useful tracer of in situ redox transformations and inputs within the water column from continental margins. In oxygenated waters, iodine is predominantly present as oxidized iodate. In the oxygen deficient zone (ODZ) in the ETNP, a substantial fraction is reduced to iodide, with the highest iodide concentrations coincident with the secondary nitrite maxima. These features resemble ODZs in the Arabian Sea and Eastern Tropical South Pacific (ETSP). Maxima in iodide and nitrite were associated with a specific water mass, referred to as the 13 °C Water, the same water mass that contains the highest concentrations of iodide within the ETSP. Physical processes leading to patchiness in the 13 °C Water relative to other water masses could account for the patchiness frequently observed in iodide and nitrite, probably reflecting subsurface mesoscale features such as eddies. Throughout much of the ETNP ODZ, iodine concentrations were higher than the mean oceanic value. This “excess iodine” is attributed to lateral inputs from sedimentary margins. Excess iodine maxima are centered within a potential density of 26.2–26.6 kg/m3, a density range that intersects with reducing shelf sediments and is almost identical to the ETSP. Evidently, margin input processes are significant throughout the basin and can influence the nitrogen and iron cycles as well, as in the ETSP.

     
    more » « less
  3. The distribution of dissolved iodine in seawater is sensitive to multiple biogeochemical cycles, including those of nitrogen and oxygen. The iodine-to-calcium ratio (I/Ca) of marine carbonates, such as bulk carbonate or foraminifera, has emerged as a potential proxy for changes in past seawater oxygenation. However, the utility of the I/Ca proxy in deep-sea corals, natural archives of seawater chemistry with wide spatial coverage and radiometric dating potential, remains unexplored. Here, we present the first I/Ca data obtained from modern deep-sea corals, specifically scleractinian and bamboo corals, collected from the Atlantic, Eastern Pacific, and Southern Oceans, encompassing a wide range of seawater oxygen concentrations (10–280 μmol/kg). In contrast to thermodynamic predictions, we observe higher I/Ca ratios in aragonitic corals (scleractinian) compared to calcitic corals (bamboo). This observation suggests a strong biological control during iodate incorporation into deep-sea coral skeletons. For the majority of scleractinian corals, I/Ca exhibits a covariation with local seawater iodate concentrations, which is closely related to seawater oxygen content. Scleractinian corals also exhibit notably lower I/Ca below a seawater oxygen threshold of approximately 160 μmol/kg. In contrast, no significant differences in I/Ca are found among bamboo corals across the range of oxygen concentrations encountered (15–240 μmol/kg). In the North Atlantic, several hydrographic factors, such as temperature and/or salinity, may additionally affect coral I/Ca. Our results highlight the potential of I/Ca ratios in deep-sea scleractinian corals to serve as an indicator of past seawater iodate concentrations, providing valuable insights into historical seawater oxygen levels.

     
    more » « less
    Free, publicly-accessible full text available November 7, 2024
  4. null (Ed.)
  5. null (Ed.)