skip to main content


Title: Electrohydrodynamic Jet Printing of 1D Photonic Crystals: Part II—Optical Design and Reflectance Characteristics
Abstract

Additive manufacturing systems that can arbitrarily deposit multiple materials into precise, 3D spaces spanning the micro‐ to nanoscale are enabling novel structures with useful thermal, electrical, and optical properties. In this companion paper set, electrohydrodynamic jet (e‐jet) printing is investigated for its ability in depositing multimaterial, multilayer films with microscale spatial resolution and nanoscale thickness control, with a demonstration of this capability in creating 1D photonic crystals (1DPCs) with response near the visible regime. Transfer matrix simulations are used to evaluate different material classes for use in a printed 1DPC, and commercially available photopolymers with varying refractive indices (n= 1.35 to 1.70) are selected based on their relative high index contrast and fast curing times. E‐jet printing is then used to experimentally demonstrate pixelated 1DPCs with individual layer thicknesses between 80 and 200 nm, square pixels smaller than 40 µm across, with surface roughness less than 20 nm. The reflectance characteristics of the printed 1DPCs are measured using spatially selective microspectroscopy and correlated to the transfer matrix simulations. These results are an important step toward enabling cost‐effective, custom‐fabrication of advanced imaging devices or photonic crystal sensing platforms.

 
more » « less
Award ID(s):
1727894
NSF-PAR ID:
10455544
Author(s) / Creator(s):
 ;  ;  ;  ;  ;  
Publisher / Repository:
Wiley Blackwell (John Wiley & Sons)
Date Published:
Journal Name:
Advanced Materials Technologies
Volume:
5
Issue:
10
ISSN:
2365-709X
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    As an alternative to traditional photolithography, printing processes are widely explored for the patterning of customizable devices. However, to date, the majority of high‐resolution printing processes for functional nanomaterials are additive in nature. To complement additive printing, there is a need for subtractive processes, where the printed ink results in material removal, rather than addition. In this study, a new subtractive patterning approach that uses electrohydrodynamic‐jet (e‐jet) printing of acid‐based inks to etch nanoscale zinc oxide (ZnO) thin films deposited using atomic layer deposition (ALD) is introduced. By tuning the printing parameters, the depth and linewidth of the subtracted features can be tuned, with a minimum linewidth of 11 µm and a tunable channel depth with ≈5 nm resolution. Furthermore, by tuning the ink composition, the volatility and viscosity of the ink can be adjusted, resulting in variable spreading and dissolution dynamics at the solution/film interface. In the future, acid‐based subtractive patterning using e‐jet printing can be used for rapid prototyping or customizable manufacturing of functional devices on a range of substrates with nanoscale precision.

     
    more » « less
  2. Abstract

    Electrohydrodynamic jet (e‐jet) printing is a high‐resolution additive manufacturing technique that holds promise for the fabrication of customized micro‐devices. In this companion paper set, e‐jet printing is investigated for its capability in depositing multilayer thin‐films with microscale spatial resolution and nanoscale thickness resolution to create arrays of 1D photonic crystals (1DPC). In this paper, an empirical model for the deposition process is developed, relating process and material parameters to the thickness and uniformity of the patterns. Standard macroscale measurements of solid surface energy and liquid surface tension are used in conjunction with microscale contact angle measurements to understand the length scale dependence of material properties and their impact on droplet merger into uniform microscale thin‐films. The model is validated with several photopolymer inks, a subset of which is used to create pixelated, multilayer arrays of 1DPCs with uniformity and resolution approaching standards in the optics manufacturing industry. It is found that the printed film topography at the microscale can be predicted based on the surface energetics at the microscale. Due to the flexibility in design provided by the e‐jet process, these findings can be generalized for fabricating additional multimaterial, multilayer micro‐ and nanostructures with applications beyond the field of optics.

     
    more » « less
  3. Abstract

    This paper reports a high‐resolution, template‐free, and direct‐printing method of functional nanofiber on 3D surfaces using a self‐aligning nanojet (SA‐N) in near‐field electrospinning (NFES). In the lowest regime of NFES, the cone‐jet transition is induced by the surface current, which leads to a unique jetting configuration where the microscale Taylor cone (microcone) is formed on the surface of the spherical‐shape droplet. The microcone rapidly develops to the nanoscale jet where the tangential electric force dominates the kinematics of the charged jet. The spherical‐shape ejection boundary allows the jetting angle from 0° to ±90° in both convex and concave surfaces, enabling precise deposition of nanofiber regardless of the curvature of the 3D surfaces. Using SA‐N, precise printing of functional nanofiber is successfully demonstrated on various 3D geometries, including convex, concave, and inner surface of the 3D structure. The direct‐printing ability of nanofiber on 3D surfaces using SA‐N will be a promising strategy to utilize various functional polymers in flexible electronics, printed electronics, optics, and biomedical engineering.

     
    more » « less
  4. Abstract

    Printed 2D materials, derived from solution‐processed inks, offer scalable and cost‐effective routes to mechanically flexible optoelectronics. With micrometer‐scale control and broad processing latitude, aerosol‐jet printing (AJP) is of particular interest for all‐printed circuits and systems. Here, AJP is utilized to achieve ultrahigh‐responsivity photodetectors consisting of well‐aligned, percolating networks of semiconducting MoS2nanosheets and graphene electrodes on flexible polyimide substrates. Ultrathin (≈1.2 nm thick) and high‐aspect‐ratio (≈1 μm lateral size) MoS2nanosheets are obtained by electrochemical intercalation followed by megasonic atomization during AJP, which not only aerosolizes the inks but also further exfoliates the nanosheets. The incorporation of the high‐boiling‐point solvent terpineol into the MoS2ink is critical for achieving a highly aligned and flat thin‐film morphology following AJP as confirmed by grazing‐incidence wide‐angle X‐ray scattering and atomic force microscopy. Following AJP, curing is achieved with photonic annealing, which yields quasi‐ohmic contacts and photoactive channels with responsivities exceeding 103 A W−1that outperform previously reported all‐printed visible‐light photodetectors by over three orders of magnitude. Megasonic exfoliation coupled with properly designed AJP ink formulations enables the superlative optoelectronic properties of ultrathin MoS2nanosheets to be preserved and exploited for the scalable additive manufacturing of mechanically flexible optoelectronics.

     
    more » « less
  5. Abstract

    Electrohydrodynamic jet (e‐jet) printing is a high‐resolution printed electronics technique that uses an electric field to generate droplets. It has great application potential with the rapid development of flexible and wearable electronics. Triboelectric nanogenerators (TENG), which can convert mechanical motions into electricity, have found many high‐voltage applications with unique merits of portability, controllability, safety, and cost‐effectiveness. In this work, the application of a TENG is extended to printed electronics by employing it to drive e‐jet printing. A rotary freestanding TENG is applied as the high‐voltage power source for generating stable ink droplet ejection. The TENG‐driven droplet generation and ejection process and printed features with varied operation parameters are investigated. Results reveal that the jetting frequency could be controlled by the TENG's operation frequency, and high‐resolution printing with feature size smaller than nozzle size is achieved using the setup. Notably, TENG as the power source for e‐jet printing supplies a limited amount of current, which leads to better safety for both equipment and personnel compared to conventional high‐voltage power supplies. With the superiority of TENG in the sense of safety and cost, the work presents a promising solution for the next‐generation of high‐resolution printed electronics and broadens the scope of TENG application.

     
    more » « less