skip to main content


Title: Adaptive greedy algorithms based on parameter‐domain decomposition and reconstruction for the reduced basis method
Abstract

The reduced basis method (RBM) empowers repeated and rapid evaluation of parametrized partial differential equations through an offline–online decomposition, a.k.a. a learning‐execution process. A key feature of the method is a greedy algorithm repeatedly scanning the training set, a fine discretization of the parameter domain, to identify the next dimension of the parameter‐induced solution manifold along which we expand the surrogate solution space. Although successfully applied to problems with fairly high parametric dimensions, the challenge is that this scanning cost dominates the offline cost due to it being proportional to the cardinality of the training set which is exponential with respect to the parameter dimension. In this work, we review three recent attempts in effectively delaying this curse of dimensionality, and propose two new hybrid strategies through successive refinement and multilevel maximization of the error estimate over the training set. All five offline‐enhanced methods and the original greedy algorithm are tested and compared on two types of problems: the thermal block problem and the geometrically parameterized Helmholtz problem.

 
more » « less
Award ID(s):
1719698
NSF-PAR ID:
10455553
Author(s) / Creator(s):
 ;  
Publisher / Repository:
Wiley Blackwell (John Wiley & Sons)
Date Published:
Journal Name:
International Journal for Numerical Methods in Engineering
Volume:
121
Issue:
23
ISSN:
0029-5981
Page Range / eLocation ID:
p. 5426-5445
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Reduced bases have been introduced for the approximation of parametrized PDEs in applications where many online queries are required. Their numerical efficiency for such problems has been theoretically confirmed in Binev et al. ( SIAM J. Math. Anal. 43 (2011) 1457–1472) and DeVore et al. ( Constructive Approximation 37 (2013) 455–466), where it is shown that the reduced basis space V n of dimension n , constructed by a certain greedy strategy, has approximation error similar to that of the optimal space associated to the Kolmogorov n -width of the solution manifold. The greedy construction of the reduced basis space is performed in an offline stage which requires at each step a maximization of the current error over the parameter space. For the purpose of numerical computation, this maximization is performed over a finite training set obtained through a discretization of the parameter domain. To guarantee a final approximation error ε for the space generated by the greedy algorithm requires in principle that the snapshots associated to this training set constitute an approximation net for the solution manifold with accuracy of order ε . Hence, the size of the training set is the ε covering number for M and this covering number typically behaves like exp( Cε −1/s ) for some C  > 0 when the solution manifold has n -width decay O ( n −s ). Thus, the shear size of the training set prohibits implementation of the algorithm when ε is small. The main result of this paper shows that, if one is willing to accept results which hold with high probability, rather than with certainty, then for a large class of relevant problems one may replace the fine discretization by a random training set of size polynomial in ε −1 . Our proof of this fact is established by using inverse inequalities for polynomials in high dimensions. 
    more » « less
  2. Abstract

    We consider the problem of covering multiple submodular constraints. Given a finite ground setN, a weight function$$w: N \rightarrow \mathbb {R}_+$$w:NR+,rmonotone submodular functions$$f_1,f_2,\ldots ,f_r$$f1,f2,,froverNand requirements$$k_1,k_2,\ldots ,k_r$$k1,k2,,krthe goal is to find a minimum weight subset$$S \subseteq N$$SNsuch that$$f_i(S) \ge k_i$$fi(S)kifor$$1 \le i \le r$$1ir. We refer to this problem asMulti-Submod-Coverand it was recently considered by Har-Peled and Jones (Few cuts meet many point sets. CoRR.arxiv:abs1808.03260Har-Peled and Jones 2018) who were motivated by an application in geometry. Even with$$r=1$$r=1Multi-Submod-Covergeneralizes the well-known Submodular Set Cover problem (Submod-SC), and it can also be easily reduced toSubmod-SC. A simple greedy algorithm gives an$$O(\log (kr))$$O(log(kr))approximation where$$k = \sum _i k_i$$k=ikiand this ratio cannot be improved in the general case. In this paper, motivated by several concrete applications, we consider two ways to improve upon the approximation given by the greedy algorithm. First, we give a bicriteria approximation algorithm forMulti-Submod-Coverthat covers each constraint to within a factor of$$(1-1/e-\varepsilon )$$(1-1/e-ε)while incurring an approximation of$$O(\frac{1}{\epsilon }\log r)$$O(1ϵlogr)in the cost. Second, we consider the special case when each$$f_i$$fiis a obtained from a truncated coverage function and obtain an algorithm that generalizes previous work on partial set cover (Partial-SC), covering integer programs (CIPs) and multiple vertex cover constraints Bera et al. (Theoret Comput Sci 555:2–8 Bera et al. 2014). Both these algorithms are based on mathematical programming relaxations that avoid the limitations of the greedy algorithm. We demonstrate the implications of our algorithms and related ideas to several applications ranging from geometric covering problems to clustering with outliers. Our work highlights the utility of the high-level model and the lens of submodularity in addressing this class of covering problems.

     
    more » « less
  3. Given a set of facilities and clients, and costs to open facilities, the classic facility location problem seeks to open a set of facilities and assign each client to one open facility to minimize the cost of opening the chosen facilities and the total distance of the clients to their assigned open facilities. Such an objective may induce an unequal cost over certain socioeconomic groups of clients (i.e., total distance traveled by clients in such a group). This is important when planning the location of socially relevant facilities such as emergency rooms. In this work, we consider a fair version of the problem where we are given 𝑟 clients groups that partition the set of clients, and the distance of a given group is defined as the average distance of clients in the group to their respective open facilities. The objective is to minimize the Minkowski 𝑝-norm of vector of group distances, to penalize high access costs to open facilities across 𝑟 groups of clients. This generalizes classic facility location (𝑝 = 1) and the minimization of the maximum group distance (𝑝 = ∞). However, in practice, fairness criteria may not be explicit or even known to a decision maker, and it is often unclear how to select a specific "𝑝" to model the cost of unfairness. To get around this, we study the notion of solution portfolios where for a fixed problem instance, we seek a small portfolio of solutions such that for any Minkowski norm 𝑝, one of these solutions is an 𝑂(1)-approximation. Using the geometric relationship between various 𝑝-norms, we show the existence of a portfolio of cardinality 𝑂(log 𝑟), and a lower bound of (\sqrt{log r}). There may not be common structure across different solutions in this portfolio, which can make planning difficult if the notion of fairness changes over time or if the budget to open facilities is disbursed over time. For example, small changes in 𝑝 could lead to a completely different set of open facilities in the portfolio. Inspired by this, we introduce the notion of refinement, which is a family of solutions for each 𝑝-norm satisfying a combinatorial property. This property requires that (1) the set of facilities open for a higher 𝑝-norm must be a subset of the facilities open for a lower 𝑝-norm, and (2) all clients assigned to an open facility for a lower 𝑝-norm must be assigned to the same open facility for any higher 𝑝-norm. A refinement is 𝛼-approximate if the solution for each 𝑝-norm problem is an 𝛼-approximation for it. We show that it is sufficient to consider only 𝑂(log 𝑟) norms instead of all 𝑝-norms, 𝑝 ∈ [1, ∞] to construct refinements. A natural greedy algorithm for the problem gives a poly(𝑟)-approximate refinement, which we improve to poly(r^1/\sqrt{log 𝑟})-approximate using a recursive algorithm. We improve this ratio to 𝑂(log 𝑟) for the special case of tree metric for uniform facility open cost. Our recursive algorithm extends to other settings, including to a hierarchical facility location problem that models facility location problems at several levels, such as public works departments and schools. A full version of this paper can be found at https://arxiv.org/abs/2211.14873. 
    more » « less
  4. We consider the problem of subset selection in the online setting, where data arrive incrementally. Instead of storing and running subset selection on the entire dataset, we propose an incremental subset selection framework that, at each time instant, uses the previously selected set of representatives and the new batch of data in order to update the set of representatives. We cast the problem as an integer binary optimization minimizing the encoding cost of the data via representatives regularized by the number of selected items. As the proposed optimization is, in general, NP-hard and non-convex, we study a greedy approach based on unconstrained submodular optimization and also propose an efficient convex relaxation. We show that, under appropriate conditions, the solution of our proposed convex algorithm achieves the global optimal solution of the non-convex problem. Our results also address the conventional problem of subset selection in the offline setting, as a special case. By extensive experiments on the problem of video summarization, we demonstrate that our proposed online subset selection algorithms perform well on real data, capturing diverse representative events in videos, while they obtain objective function values close to the offline setting. 
    more » « less
  5. We consider the problem of subset selection in the online setting, where data arrive incrementally. Instead of storing and running subset selection on the entire dataset, we propose an incremental subset selection framework that, at each time instant, uses the previously selected set of representatives and the new batch of data in order to update the set of representatives. We cast the problem as an integer bi- nary optimization minimizing the encoding cost of the data via representatives regularized by the number of selected items. As the proposed optimization is, in general, NP-hard and non-convex, we study a greedy approach based on un- constrained submodular optimization and also propose an efficient convex relaxation. We show that, under appropriate conditions, the solution of our proposed convex algorithm achieves the global optimal solution of the non-convex problem. Our results also address the conventional problem of subset selection in the offline setting, as a special case. By extensive experiments on the problem of video summarization, we demonstrate that our proposed online subset selection algorithms perform well on real data, capturing diverse representative events in videos, while they obtain objective function values close to the offline setting. 
    more » « less