Summary Leaf‐out in temperate forests is a critical transition point each spring and advancing with global change. The mechanism linking phenological variation to external cues is poorly understood. Nonstructural carbohydrate (NSC) availability may be key.Here, we use branch cuttings from northern red oak (Quercus rubra) and measure NSCs throughout bud development in branch tissue. Given genes and environment influence phenology, we placed branches in an arrayed factorial experiment (three temperatures × two photoperiods, eight genotypes) to examine their impact on variation in leaf‐out timing and corresponding NSCs.Despite significant differences in leaf‐out timing between treatments, NSC patterns were much more consistent, with all treatments and genotypes displaying similar NSC concentrations across phenophases. Notably, the moderate and hot temperature treatments reached the same NSC concentrations and phenophases at the same growing degree days (GDD), but 20 calendar days apart, while the cold treatment achieved only half the GDD of the other two.Our results suggest that NSCs are coordinated with leaf‐out and could act as a molecular clock, signaling to cells the passage of time and triggering leaf development to begin. This link between NSCs and budburst is critical for improving predictions of phenological timing.
more »
« less
Latitudinal clines in bud flush phenology reflect genetic variation in chilling requirements in balsam poplar, Populus balsamifera
PremiseBoreal and northern temperate forest trees possess finely tuned mechanisms of dormancy, which match bud phenology with local seasonality. After winter dormancy, the accumulation of chilling degree days (CDD) required for rest completion before the accumulation of growing degree days (GDD) during quiescence is an important step in the transition to spring bud flush. While bud flush timing is known to be genetically variable within species, few studies have investigated variation among genotypes from different climates in response to variable chilling duration. MethodsWe performed a controlled environment study using dormant cuttings from 10 genotypes ofPopulus balsamifera, representing a broad latitudinal gradient (43–58°N). We exposed cuttings to varying amounts of chilling (0–10 weeks) and monitored subsequent GDD to bud flush at a constant forcing temperature. ResultsChilling duration strongly accelerated bud flush timing, with increasing CDD resulting in fewer GDD to flush. Genotypic variation for bud flush was significant and stratified by latitude, with southern genotypes requiring more GDD to flush than northern genotypes. The latitudinal cline was pronounced under minimal chilling, whereas genotypic variation in GDD to bud flush converged as CDD increased. ConclusionsWe demonstrate that increased chilling lessens GDD to bud flush in a genotype‐specific manner. Our results emphasize that latitudinal clines in bud flush reflect a critical genotype‐by‐environment interaction, whereby differences in bud flush between southern vs. northern genotypes depend on chilling. Our results suggest selection has shaped chilling requirements and depth of rest as an adaptive strategy to avoid precocious flush in climates with midwinter warming.
more »
« less
- Award ID(s):
- 1461868
- PAR ID:
- 10455574
- Publisher / Repository:
- Wiley Blackwell (John Wiley & Sons)
- Date Published:
- Journal Name:
- American Journal of Botany
- Volume:
- 107
- Issue:
- 11
- ISSN:
- 0002-9122
- Format(s):
- Medium: X Size: p. 1597-1605
- Size(s):
- p. 1597-1605
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Abstract In a rapidly changing environment, predicting changes in the growth and survival of local populations can inform conservation and management. Plastic responses vary as a result of genetic differentiation within and among species, so accurate rangewide predictions require characterization of genotype-specific reaction norms across the continuum of historic and future climate conditions comprising a species’ range. Natural hybrid zones can give rise to novel recombinant genotypes associated with high phenotypic variability, further increasing the variance of plastic responses within the ranges of the hybridizing species. Experiments that plant replicated genotypes across a range of environments can characterize genotype-specific reaction norms; identify genetic, geographic, and climatic factors affecting variation in climate responses; and make predictions of climate responses across complex genetic and geographic landscapes. The North American hybrid zone ofPopulus trichocarpaandP. balsamiferarepresents a natural system in which reaction norms are likely to vary with underlying genetic variation that has been shaped by climate, geography, and introgression. Here, we leverage a dataset containing 45 clonal genotypes of varying ancestry from this natural hybrid zone, planted across 17 replicated common garden experiments spanning a broad climatic range, including sites warmer than the natural species ranges. Growth and mortality were measured over two years, enabling us to model reaction norms for each genotype across these tested environments. Genomic variation associated with species ancestry and northern/southern regions significantly influenced growth across environments, with genotypic variation in reaction norms reflecting a trade-off between cold tolerance and growth. Using modeled reaction norms for each genotype, we predicted that genotypes with moreP. trichocarpaancestry may gain an advantage under warmer climates. Spatial shifts of the hybrid zone could facilitate the spread of beneficial alleles into novel climates. These results highlight that genotypic variation in responses to temperature will have landscape-level effects.more » « less
-
Thermal Forcing Versus Chilling? Misspecification of Temperature Controls in Spring Phenology ModelsABSTRACT BackgroundClimate‐change‐induced shifts in the timing of leaf emergence during spring have been widely documented and have important ecological consequences. However, mechanistic knowledge regarding what controls the timing of spring leaf emergence is incomplete. Field‐based studies under natural conditions suggest that climate‐warming‐induced decreases in cold temperature accumulation (chilling) have expanded the dormancy duration or reduced the sensitivity of plants to warming temperatures (thermal forcing) during spring, thereby slowing the rate at which the timing of leaf emergence is shifting earlier in response to ongoing climate change. However, recent studies have argued that the apparent reductions in temperature sensitivity may arise from artefacts in the way that temperature sensitivity is calculated, while other studies based on statistical and mechanistic models specifically designed to quantify the role of chilling have shown conflicting results. MethodsWe analysed four commonly used combinations of phenology and temperature datasets obtained from remote sensing and ground observations to elucidate whether current model‐based approaches robustly quantify how chilling, in concert with thermal forcing, controls the timing of leaf emergence during spring under current climate conditions. ResultsWe show that widely used modeling approaches that are calibrated using field‐based observations misspecify the role of chilling under current climate conditions as a result of statistical artefacts inherent to the way that chilling is parameterised. Our results highlight the limitations of existing modelling approaches and observational data in quantifying how chilling affects the timing of spring leaf emergence and suggest that decreasing chilling arising from climate warming may not constrain near‐future shifts towards earlier leaf emergence in extra‐tropical ecosystems worldwide.more » « less
-
Summary Plastic responses of plants to their environment vary as a result of genetic differentiation within and among species. To accurately predict rangewide responses to climate change, it is necessary to characterize genotype‐specific reaction norms across the continuum of historic and future climate conditions comprising a species' range.The North American hybrid zone ofPopulus trichocarpaandPopulus balsamiferarepresents a natural system that has been shaped by climate, geography, and introgression. We leverage a dataset containing 44 clonal genotypes from this natural hybrid zone, planted across 17 replicated common garden experiments spanning a broad climatic range. Growth and mortality were measured over 2 yr, enabling us to model reaction norms for each genotype across these tested environments.Species ancestry and intraspecific genomic variation significantly influenced growth across environments, with genotypic variation in reaction norms reflecting a trade‐off between cold tolerance and growth. Using modeled reaction norms for each genotype, we predicted that genotypes with moreP. trichocarpaancestry may gain an advantage under warmer climates.Spatial shifts of the hybrid zone could facilitate the spread of beneficial alleles into novel climates. These results highlight that genotypic variation in responses to temperature will have landscape‐level effects.more » « less
-
Abstract Recurring seasonal changes can lead to the evolution of phenological cues. For example, many arthropods undergo photoperiodic diapause, a programmed developmental arrest induced by short autumnal day length. The selective mechanisms that determine the timing of autumnal diapause initiation have not been empirically identified. We quantified latitudinal clines in genetically determined diapause timing of an invasive mosquito,Aedes albopictus,on two continents. We show that variation in diapause timing within and between continents is explained by a novel application of a growing degree day (GDD) model that delineates a location‐specific deadline after which it is not possible to complete an additional full life cycle. GDD models are widely used to predict spring phenology by modelling growth and development as physiological responses to ambient temperatures. Our results show that the energy accumulation dynamics represented by GDD models have also led to the evolution of an anticipatory life‐history cue in autumn.more » « less
An official website of the United States government
