skip to main content


Title: Interfacial Molecular Doping of Metal Halide Perovskites for Highly Efficient Solar Cells
Abstract

Tailoring the doping of semiconductors in heterojunction solar cells shows tremendous success in enhancing the performance of many types of inorganic solar cells, while it is found challenging in perovskite solar cells because of the difficulty in doping perovskites in a controllable way. Here, a small molecule of 4,4′,4″,4″′‐(pyrazine‐2,3,5,6‐tetrayl) tetrakis (N,N‐bis(4‐methoxyphenyl) aniline) (PT‐TPA) which can effectively p‐dope the surface of FAxMA1−xPbI3(FA: HC(NH2)2; MA: CH3NH3) perovskite films is reported. The intermolecular charge transfer property of PT‐TPA forms a stabilized resonance structure to accept electrons from perovskites. The doping effect increases perovskite dark conductivity and carrier concentration by up to 4737 times. Computation shows that electrons in the first two layers of octahedral cages in perovskites are transferred to PT‐TPA. After applying PT‐TPA into perovskite solar cells, the doping‐induced band bending in perovskite effectively facilitates hole extraction to hole transport layer and expels electrons toward cathode side, which reduces the charge recombination there. The optimized devices demonstrate an increased photovoltage from 1.12 to 1.17 V and an efficiency of 23.4% from photocurrent scanning with a stabilized efficiency of 22.9%. The findings demonstrate that molecular doping is an effective route to control the interfacial charge recombination in perovskite solar cells which is in complimentary to broadly applied defect passivation techniques.

 
more » « less
Award ID(s):
1903981
NSF-PAR ID:
10455594
Author(s) / Creator(s):
 ;  ;  ;  ;  ;  ;  ;  ;  ;  
Publisher / Repository:
Wiley Blackwell (John Wiley & Sons)
Date Published:
Journal Name:
Advanced Materials
Volume:
32
Issue:
31
ISSN:
0935-9648
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. The remarkable optoelectronic properties of metal halide perovskites have generated intense research interest over the last few years. The ability to control and manipulate the crystallisation and stoichiometry of perovskite thin-films has allowed for impressive strides in the development of highly efficient perovskite solar cells. However, being able to effectively modify the interfaces of metal halide perovskites, and to controllably p- or n-type dope the surfaces, may be key to further improvements in the efficiency and long-term stability of these devices. In this study, we use surface doping of the mixed-cation, mixed-halide perovskite FA 0.85 MA 0.15 Pb(I 0.85 Br 0.15 ) 3 (FA – formamidinium; MA – methylammonium) to improve the hole extraction from the perovskite solar cell. By treating the surface of the perovskite film with a strongly oxidizing molybdenum tris(dithiolene) complex, we achieve a shift in the work function that is indicative of p-doping, and a twofold increase in the total conductivity throughout the film. We probe the associated interfacial chemistry through photoelectron and solid-state nuclear magnetic resonance spectroscopies and confirm that charge-transfer occurs between the perovskite and dopant complex. The resulting p-doped interface constitutes a homojunction with increased hole-selectivity. With charge-selective layers, we show that this surface doping enhances the device performance of perovskite solar cells resulting in steady-state efficiencies approaching 21%. Finally, we demonstrate that a surface treatment with this dopant produces the same effect as the commonly employed additive 4- tert butylpyridine ( t BP), allowing us to achieve “ t BP-free” devices with steady-state efficiencies of over 20%, and enhanced thermal stability as compared to devices processed using t BP. Our findings therefore demonstrate that molecular doping is a feasible route to tune and control the surface properties of metal halide perovskites. 
    more » « less
  2. Abstract

    Dion–Jacobson (DJ) phase 2D layered perovskites with diammonium organic cations demonstrate improved stability over 3D perovskites under thermal/photo/moisture stresses. However, the power conversion efficiency (PCE) of DJ phase perovskite solar cells (PVSCs) is often limited by the poor charge transport across the perovskite layers due to the crystal growth direction that tends to be parallel to the substrate. Here, a simple and effective method is demonstrated by employing a NH4SCN additive to facilitate the orientation of perovskite crystal growth to be perpendicular to the substrate. Also, the layer number distribution can be narrowed to aroundn= 3 andn= 4 with NH4SCN addition. The device derived from the quasi‐2D DJ (BDA)(MA)4Pb5I16perovskite film processed with NH4SCN shows a PCE of 14.53%, which is among the highest values reported for 2D PVSCs prepared at room temperature. Moreover, the device retains 85% of its initial PCE after 900 h storage in ambient conditions with a humidity level of 50 ± 5%. These results demonstrate that this attractive approach will enable highly efficient and stable PVSCs to be made for renewable energy applications.

     
    more » « less
  3. Conjugated molecules have been typically utilized as either hole or electron extraction layers to boost the device performance of perovskite solar cells (PSCs), formed from three-dimensional (3D) perovskites, due to their high charge carrier mobility and electrical conductivity. However, the passivating role of conjugated molecules in creating two-dimensional (2D) perovskites has rarely been reported. In this study, we report novel conjugated aniline 3-phenyl-2-propen-1-amine (PPA) based 2D perovskites and further demonstrate efficient and stable PSCs containing a (PPA) x (MAPbI 3 ) 1− x /MAPbI 3 bilayer thin film (where MA is CH 3 NH 3 + ). The (PPA) x (MAPbI 3 ) 1− x /MAPbI 3 bilayer thin film possesses superior crystallinity and passivated trap states, resulting in enhanced charge transport and suppressed charge carrier recombination compared to those of a 3D MAPbI 3 thin film. As a result, PSCs containing the (PPA) x (MAPbI 3 ) 1− x /MAPbI 3 bilayer thin film exhibit a power conversion efficiency (PCE) of 21.98%, which is approximately a 25% enhancement compared to that of the MAPbI 3 thin film. Moreover, un-encapsulated PSCs containing the (PPA) x (MAPbI 3 ) 1− x /MAPbI 3 bilayer thin film retain 50% of their initial PCE after 1200 hours in an ambient atmosphere (25 °C, and 30 ± 10 humidity), whereas PSCs with the 3D MAPbI 3 thin film show significant degradation after 100 hours and a degradation of more than 50% of their original PCE after 500 hours. These results demonstrate that the incorporation of conjugated molecules as organic spacer cations to create 2D perovskites on top of 3D perovskites is an effective way to approach high-performance PSCs. 
    more » « less
  4. Abstract

    Hybrid halide 2D perovskites deserve special attention because they exhibit superior environmental stability compared with their 3D analogs. The closer interlayer distance discovered in 2D Dion–Jacobson (DJ) type of halide perovskites relative to 2D Ruddlesden–Popper (RP) perovskites implies better carrier charge transport and superior performance in solar cells. Here, the structure and properties of 2D DJ perovskites employing 3‐(aminomethyl)piperidinium (3AMP2+) as the spacing cation and a mixture of methylammonium (MA+) and formamidinium (FA+) cations in the perovskite cages are presented. Using single‐crystal X‐ray crystallography, it is found that the mixed‐cation (3AMP)(MA0.75FA0.25)3Pb4I13perovskite has a narrower bandgap, less distorted inorganic framework, and larger PbIPb angles than the single‐cation (3AMP)(MA)3Pb4I13. Furthermore, the (3AMP)(MA0.75FA0.25)3Pb4I13films made by a solvent‐engineering method with a small amount of hydriodic acid have a much better film morphology and crystalline quality and more preferred perpendicular orientation. As a result, the (3AMP)(MA0.75FA0.25)3Pb4I13‐based solar cells exhibit a champion power conversion efficiency of 12.04% with a high fill factor of 81.04% and a 50% average efficiency improvement compared to the pristine (3AMP)(MA)3Pb4I13cells. Most importantly, the 2D DJ 3AMP‐based perovskite films and devices show better air and light stability than the 2D RP butylammonium‐based perovskites and their 3D analogs.

     
    more » « less
  5. Abstract

    Composition engineering is a particularly simple and effective approach especially using mixed cations and halide anions to optimize the morphology, crystallinity, and light absorption of perovskite films. However, there are very few reports on the use of anion substitutions to develop uniform and highly crystalline perovskite films with large grain size and reduced defects. Here, the first report of employing tetrafluoroborate (BF4) anion substitutions to improve the properties of (FA = formamidinium, MA = methylammonium (FAPbI3)0.83(MAPbBr3)0.17) perovskite films is demonstrated. The BF4can be successfully incorporated into a mixed‐ion perovskite crystal frame, leading to lattice relaxation and a longer photoluminescence lifetime, higher recombination resistance, and 1–2 orders magnitude lower trap density in prepared perovskite films and derived solar cells. These advantages benefit the performance of perovskite solar cells (PVSCs), resulting in an improved power conversion efficiency (PCE) of 20.16% from 17.55% due to enhanced open‐circuit voltage (VOC) and fill factor. This is the highest PCE for BF4anion substituted lead halide PVSCs reported to date. This work provides insight for further exploration of anion substitutions in perovskites to enhance the performance of PVSCs and other optoelectronic devices.

     
    more » « less