skip to main content


Title: Conjugated molecule based 2D perovskites for high-performance perovskite solar cells
Conjugated molecules have been typically utilized as either hole or electron extraction layers to boost the device performance of perovskite solar cells (PSCs), formed from three-dimensional (3D) perovskites, due to their high charge carrier mobility and electrical conductivity. However, the passivating role of conjugated molecules in creating two-dimensional (2D) perovskites has rarely been reported. In this study, we report novel conjugated aniline 3-phenyl-2-propen-1-amine (PPA) based 2D perovskites and further demonstrate efficient and stable PSCs containing a (PPA) x (MAPbI 3 ) 1− x /MAPbI 3 bilayer thin film (where MA is CH 3 NH 3 + ). The (PPA) x (MAPbI 3 ) 1− x /MAPbI 3 bilayer thin film possesses superior crystallinity and passivated trap states, resulting in enhanced charge transport and suppressed charge carrier recombination compared to those of a 3D MAPbI 3 thin film. As a result, PSCs containing the (PPA) x (MAPbI 3 ) 1− x /MAPbI 3 bilayer thin film exhibit a power conversion efficiency (PCE) of 21.98%, which is approximately a 25% enhancement compared to that of the MAPbI 3 thin film. Moreover, un-encapsulated PSCs containing the (PPA) x (MAPbI 3 ) 1− x /MAPbI 3 bilayer thin film retain 50% of their initial PCE after 1200 hours in an ambient atmosphere (25 °C, and 30 ± 10 humidity), whereas PSCs with the 3D MAPbI 3 thin film show significant degradation after 100 hours and a degradation of more than 50% of their original PCE after 500 hours. These results demonstrate that the incorporation of conjugated molecules as organic spacer cations to create 2D perovskites on top of 3D perovskites is an effective way to approach high-performance PSCs.  more » « less
Award ID(s):
1903303
NSF-PAR ID:
10329843
Author(s) / Creator(s):
; ; ; ; ; ; ; ;
Date Published:
Journal Name:
Journal of Materials Chemistry A
Volume:
9
Issue:
38
ISSN:
2050-7488
Page Range / eLocation ID:
21910 to 21917
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    Composition and film quality of perovskite are crucial for the further improvement of perovskite solar cells (PSCs), including efficiency, reproducibility, and stability. Here, it is demonstrated that by simply mixing 50% of formamidinium (FA+) into methylammonium lead iodide (MAPbI3), a highly crystalline, stable phase, and compact, polycrystalline grain morphology perovskite is formed by using a solvent‐mediated phase transformation process via the synergism of dimethyl sulfoxide and diethyl ether, which shows long carrier lifetime, low trap state density, and a record certified 21.8% power conversion efficiency (PCE) in pure‐iodide, alkaline‐metal‐free MA0.5FA0.5PbI3perovskite‐based PSCs. These PSCs show very high operational stability, with 85% PCE retention upon 1000 h 1 Sun intensity illumination. A 17.33% PCE module (6.5 × 7 cm2) is also demonstrated, attesting to the scalability of such devices.

     
    more » « less
  2. Abstract

    Organic–inorganic halide perovskites are intrinsically unstable when exposed to moisture and/or light. Additionally, the presence of lead in many perovskites raises toxicity concerns. Herein, a thin film of barium zirconium sulfide (BaZrS3), a lead‐free chalcogenide perovskite, is reported. Photoluminescence and X‐ray diffraction measurements show that BaZrS3is far more stable than methylammonium lead iodide (MAPbI3) in moist environments. Moisture‐ and light‐induced degradations in BaZrS3and MAPbI3are compared by using simulations and calculations based on density functional theory. The simulations reveal drastically slower degradation in BaZrS3due to two factors—weak interaction with water and very low rates of ion migration. BaZrS3photodetecting devices with photoresponsivity of ≈46.5 mA W−1are also reported. The devices retain ≈60% of their initial photoresponse after 4 weeks under ambient conditions. Similar MAPbI3devices degrade rapidly and show a ≈95% decrease in photoresponsivity in just 4 days. The findings establish the superior stability of BaZrS3and strengthen the case for its use in optoelectronics. New possibilities for thermoelectric energy conversion using these materials are also demonstrated.

     
    more » « less
  3. Abstract

    Hybrid halide 2D perovskites deserve special attention because they exhibit superior environmental stability compared with their 3D analogs. The closer interlayer distance discovered in 2D Dion–Jacobson (DJ) type of halide perovskites relative to 2D Ruddlesden–Popper (RP) perovskites implies better carrier charge transport and superior performance in solar cells. Here, the structure and properties of 2D DJ perovskites employing 3‐(aminomethyl)piperidinium (3AMP2+) as the spacing cation and a mixture of methylammonium (MA+) and formamidinium (FA+) cations in the perovskite cages are presented. Using single‐crystal X‐ray crystallography, it is found that the mixed‐cation (3AMP)(MA0.75FA0.25)3Pb4I13perovskite has a narrower bandgap, less distorted inorganic framework, and larger PbIPb angles than the single‐cation (3AMP)(MA)3Pb4I13. Furthermore, the (3AMP)(MA0.75FA0.25)3Pb4I13films made by a solvent‐engineering method with a small amount of hydriodic acid have a much better film morphology and crystalline quality and more preferred perpendicular orientation. As a result, the (3AMP)(MA0.75FA0.25)3Pb4I13‐based solar cells exhibit a champion power conversion efficiency of 12.04% with a high fill factor of 81.04% and a 50% average efficiency improvement compared to the pristine (3AMP)(MA)3Pb4I13cells. Most importantly, the 2D DJ 3AMP‐based perovskite films and devices show better air and light stability than the 2D RP butylammonium‐based perovskites and their 3D analogs.

     
    more » « less
  4. Abstract

    Polymer solar cells (PSCs) with a bulk heterojunction (BHJ) device structure have incredible advantages, such as low‐cost fabrication and flexibility. However, the power conversion efficiency (PCE) of BHJ PSCs needs to be further improved to realize their practical applications. In this study, boosted PCEs from PSCs based on BHJ composites incorporated with Fe3O4magnetic nanoparticles (MNPs), aligned by an external magnetic field (EMF), are reported. It is found that the coercive electric field within the Fe3O4MNPs generated by the EMF has a strong and positive influence on the charge generation, which results in a more than 10% increase in free charge carriers. Moreover, the coercive electric field speeds up the charge carrier transport and suppresses charge carrier recombination within PSCs. In addition, a shortened extraction time makes charge carriers more likely to make it to the electrodes. As a result, more than 15% enhancement in PCE is observed from the PSCs based on the BHJ composite incorporated with the Fe3O4MNPs and the EMF as compared with that based on the BHJ composite thin film. This work indicates that the incorporation of MNPs and the EMF is a facile way to enhance the PCEs of PSCs.

     
    more » « less
  5. Abstract

    Surface passivation of perovskite solar cells (PSCs) using a low‐cost industrial organic pigment quinacridone (QA) is presented. The procedure involves solution processing a soluble derivative of QA,N,N‐bis(tert‐butyloxycarbonyl)‐quinacridone (TBOC‐QA), followed by thermal annealing to convert TBOC‐QA into insoluble QA. With halide perovskite thin films coated by QA, PSCs based on methylammonium lead iodide (MAPbI3) showed significantly improved performance with remarkable stability. A PCE of 21.1 % was achieved, which is much higher than 18.9 % recorded for the unmodified devices. The QA coating with exceptional insolubility and hydrophobicity also led to greatly enhanced contact angle from 35.6° for the pristine MAPbI3thin films to 77.2° for QA coated MAPbI3thin films. The stability of QA passivated MAPbI3perovskite thin films and PSCs were significantly enhanced, retaining about 90 % of the initial efficiencies after more than 1000 hours storage under ambient conditions.

     
    more » « less