Abstract Antagonistic coevolution between natural enemies can produce highly exaggerated traits, such as prey toxins and predator resistance. This reciprocal process of adaptation and counter‐adaptation may also open doors to other evolutionary novelties not directly involved in the phenotypic interface of coevolution. We tested the hypothesis that predator–prey coevolution coincided with the evolution of conspicuous coloration on resistant predators that retain prey toxins. In western North America, common garter snakes (Thamnophis sirtalis) have evolved extreme resistance to tetrodotoxin (TTX) in the coevolutionary arms race with their deadly prey, Pacific newts (Tarichaspp.). TTX‐resistant snakes can retain large amounts of ingested TTX, which could serve as a deterrent against the snakes' own predators if TTX toxicity and resistance are coupled with a conspicuous warning signal. We evaluated whether arms race escalation covaries with bright red coloration in snake populations across the geographic mosaic of coevolution. Snake colour variation departs from the neutral expectations of population genetic structure and covaries with escalating clines of newt TTX and snake resistance at two coevolutionary hotspots. In the Pacific Northwest, bright red coloration fits an expected pattern of an aposematic warning to avian predators: TTX‐resistant snakes that consume highly toxic newts also have relatively large, reddish‐orange dorsal blotches. Snake coloration also seems to have evolved with the arms race in California, but overall patterns are less intuitively consistent with aposematism. These results suggest that interactions with additional trophic levels can generate novel traits as a cascading consequence of arms race coevolution across the geographic mosaic.
more »
« less
From masquerading to blending in: ontogenetic shifts in antipredator camouflage in Wallace’s flying frogs
AbstractA diversity of defence colourations that shift over time provides protection against natural enemies. Adaptations for camouflage depend on an organism’s interactions with the natural environment (predators, habitat), which can change ontogenetically. Wallace’s flying frogs (Rhacophorus nigropalmatus) are cryptic emerald green in their adult life stage, but juveniles are bright red and develop white spots on their back 1 month after metamorphosis. This latter conspicuous visual appearance might function as antipredator strategy, where frogs masquerade as bird or bat droppings so that predators misidentified them as inedible objects. To test this idea, we created different paraffin wax frog models—red with white spots, red without white spots, green, and unpainted—and placed them in equal numbers within a > 800 m2rainforest house at the Vienna Zoo. This environment closely resembles the Bornean rainforest and includes several free-living avian predators of frogs. We observed an overall hit rate of 15.5%. A visual model showed that the contrast of red, green and control models against the background colouration could be discriminated by avian predators, whereas green models had less chromatic difference than red morphs. The attack rate was significantly greater for red but was reduced by half when red models had white spots. The data therefore supports the hypothesis that the juvenile colouration likely acts as a masquerade strategy, disguising frogs as animal droppings which provides similar protection as the cryptic green adult colour. We discuss the ontogenetic colour change as a possible antipredator strategy in relation to the different habitats used at different life stages. Significance statementPredation pressure and the evolution of antipredator strategies site at the cornerstone of animal-behaviour research. Effective antipredator strategies can change in response to different habitats that animals use during different life stages. We study ontogenetic shifts in colour change as dynamic antipredator strategy in juvenile and adult Wallace’s flying frogs. We show that the unusual colour pattern of juveniles (bright red with small white spots) likely functions as a masquerade of animal droppings. Specifically, we show that white dotting, which can be associated with animal faeces, acts as the main visual feature that turns an otherwise highly conspicuous individual into a surprisingly camouflaged one. To our knowledge, this is the first experimental exploration of a vertebrate masquerading as animal droppings.
more »
« less
- Award ID(s):
- 1952542
- PAR ID:
- 10455605
- Publisher / Repository:
- Springer Science + Business Media
- Date Published:
- Journal Name:
- Behavioral Ecology and Sociobiology
- Volume:
- 77
- Issue:
- 9
- ISSN:
- 0340-5443
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Kaiser, Hinrich; Zagar, Anamarija; Müller, Hendrik (Ed.)Abstract. Marking juveniles of terrestrial direct-developing frogs is challenging because of their small size (< 18 mm) and fragility. This difficulty has limited studies on demography or population dynamics where empirical data on the survivorship of juveniles or their recruitment to adulthood are missing. In a controlled laboratory experiment, we tested the survivorship of wild-caught juvenile Eleutherodactylus coqui Thomas, 1966 to marking with a single colour visual internal elastomer (VIE) in the thigh, with and without additional ventral skin-swabbing for disease or microbiome monitoring. Results revealed 100% survival in all groups, and all juveniles remained unharmed, moved freely, and fed actively during three days after treatment, suggesting that this type of manipulation does not cause direct mortality. After 17 months of the experiment, we have recaptured 11% of the marked juveniles as adults, indicating that they can survive to recruitment age. We propose the use of a single VIE colour as a method to mark and follow date-specific cohorts of juvenile direct-developing frogs or young metamorphs until they reach older and larger age classes. This marking method can be used safely together with skin swabbing and provide valuable information for studies on population biology and age-specific response to environmental or disease stressors.more » « less
-
Abstract Chimpanzee ( Pan troglodytes ) sclera appear much darker than the white sclera of human eyes, to such a degree that the direction of chimpanzee gaze may be concealed from conspecifics. Recent debate surrounding this topic has produced mixed results, with some evidence suggesting that (1) primate gaze is indeed concealed from their conspecifics, and (2) gaze colouration is among the suite of traits that distinguish uniquely social and cooperative humans from other primates (the cooperative eye hypothesis). Using a visual modelling approach that properly accounts for specific-specific vision, we reexamined this topic to estimate the extent to which chimpanzee eye coloration is discriminable. We photographed the faces of captive chimpanzees and quantified the discriminability of their pupil, iris, sclera, and surrounding skin. We considered biases of cameras, lighting conditions, and commercial photography software along with primate visual acuity, colour sensitivity, and discrimination ability. Our visual modeling of chimpanzee eye coloration suggests that chimpanzee gaze is visible to conspecifics at a range of distances (within approximately 10 m) appropriate for many species-typical behaviours. We also found that chimpanzee gaze is discriminable to the visual system of primates that chimpanzees prey upon, Colobus monkeys. Chimpanzee sclera colour does not effectively conceal gaze, and we discuss this result with regard to the cooperative eye hypothesis, the evolution of primate eye colouration, and methodological best practices for future primate visual ecology research.more » « less
-
Shawkey, Matthew (Ed.)Research on visually driven behavior in anurans has often focused on Dendrobatoidea, a clade with extensive variation in skin reflectance, which is perceived to range from cryptic to conspicuous coloration. Because these skin patterns are important in intraspecific and interspecific communication, we hypothesized that the visual spectral sensitivity of dendrobatids should vary with conspecific skin spectrum. We predicted that the physiological response of frog retinas would be tuned to portions of the visible light spectrum that match their body reflectance. Using wavelength-specific electroretinograms (ERGs; from 350-650 nm), spectrometer measurements, and color-calibrated photography of the skin, we compared retinal sensitivity and reflectance of two cryptic species (Allobates talamancaeandSilverstoneia flotator), two intermediate species (Colostethus panamansisandPhyllobates lugubris), and two conspicuous aposematic species (Dendrobates tinctoriusandOophaga pumilio). Consistent with the matched filter hypothesis, the retinae of cryptic and intermediate species were sensitive across the spectrum, without evidence of spectral tuning to specific wavelengths, yielding low-threshold broadband sensitivity. In contrast, spectral tuning was found to be different between morphologically distinct populations ofO.pumilio, where frogs exhibited retinal sensitivity better matching their morph’s reflectance. This sensory specialization is particularly interesting given the rapid phenotypic divergence exhibited by this species and their behavioral preference for sympatric skin reflectances. Overall, this study suggests that retinal sensitivity is coevolving with reflective strategy and spectral reflectance in dendrobatids.more » « less
-
TBD (Ed.)Animal colouration is fundamentally important for social communication within conspecifics to advertising threat to competitors or fitness to possible mates. Social status and animal colouration are covarying traits that are plastic in response to dynamic environments. In the African cichlid,Astatotilapia burtoni, body colouration and behaviour have been extensively reported to vary with social rank. However, the nature of the interaction between these two traits is poorly understood. We hypothesise that pigmentation patterns could be linked to the behavioural repertoires underlying social status and can be resolved to regions on the cichlid body plan. To test this hypothesis, we generated Territorial (T) and Non-territorial (NT) males and employed computer vision tools to quantify and visualise patterns/colour enrichment associated with stereotyped T/NT male behaviour. We report colour-behaviour interactions localised in specific areas of the body and face for two colour morphs illustrating a more nuanced view of social behaviour and pigmentation. Since behavioural and morphological variation are key drivers of selection in the East African Great Rift Lakes, we surmise our data may be translatable to other cichlid lineages and underline the importance of trait covariance in sexual selection and male competition.more » « less
An official website of the United States government
