skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Water Security Assessment for the Contiguous United States Using Water Footprint Concepts
Abstract Water security is tightly connected with the food security, ecological health, and economic prosperity of a region. In this study, a comprehensive water security assessment based on water footprint concepts from 1995 to 2015 was performed for the counties located in the Contiguous States of the Unites States. The availability of blue water (e.g., surface water) is comparatively less in the western river basins, and most of the rainfed agricultural lands in the eastern United States were characterized by the lower levels of green water (e.g., root zone soil moisture) storage. This integrated assessment of the water security indicators can directly map the critical regions and reveal the dependence between human water consumption, crop water requirements and environmental flow. This analysis can be further extended to incorporate climate change and extreme drought events to inform specific locations (e.g., counties and watersheds) at which problems of water conflict are more likely to occur.  more » « less
Award ID(s):
1653841
PAR ID:
10455676
Author(s) / Creator(s):
 ;  
Publisher / Repository:
DOI PREFIX: 10.1029
Date Published:
Journal Name:
Geophysical Research Letters
Volume:
47
Issue:
7
ISSN:
0094-8276
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract Efficiently managing agricultural irrigation is vital for food security today and into the future under climate change. Yet, evaluating agriculture’s hydrological impacts and strategies to reduce them remains challenging due to a lack of field-scale data on crop water consumption. Here, we develop a method to fill this gap using remote sensing and machine learning, and leverage it to assess water saving strategies in California’s Central Valley. We find that switching to lower water intensity crops can reduce consumption by up to 93%, but this requires adopting uncommon crop types. Northern counties have substantially lower irrigation efficiencies than southern counties, suggesting another potential source of water savings. Other practices that do not alter land cover can save up to 11% of water consumption. These results reveal diverse approaches for achieving sustainable water use, emphasizing the potential of sub-field scale crop water consumption maps to guide water management in California and beyond. 
    more » « less
  2. Abstract Negative health impacts of water insecurity are often felt most in poor and rural communities and communities of color, who are more likely to be underserved by water infrastructure and disproportionately subject to socioeconomic stressors. Despite mandated efforts to allocate significant federal resources to infrastructure funding in ‘disadvantaged communities,’ communities with the most need risk systematic exclusion from access to resources, decision-making structures, and even benefits of research intended to address inequitable infrastructure services and health outcomes in their own communities. This project aims to describe groundwork and preliminary findings from community-engaged environmental research conducted within an ongoing community-based participatory research partnership in Robeson County, NC, a majority–minority county with the lowest median household income of NC’s 100 counties. Semi-structured interviews conducted with community members were analyzed to identify concerns about drinking water security (including safety, affordability, and reliability), perceptions of water quality, averting behaviors taken due to water insecurity, and ideas for improving water security. Findings suggest that there is a high level of mistrust in community water supplies, with perceptions of poor water quality driving a reliance on bottled water. Those relying on private wells expressed greater trust in their water and lower reliance on bottled water. Concerns about affordability were less prominent than those about water quality. Insufficient water reliability (low flow) was mentioned by many respondents, including those with community water service and those relying on private wells. Most supported increasing taxes to improve water security and also recommended increasing communications between water service providers and the public to improve trust. Overall, this work suggests the need for a comprehensive assessment of the quality and reliability of community water services in Robeson County, interventions to address problems identified, and much more engagement with the community about identifying and allocating funding to solve water security problems. 
    more » « less
  3. Land use change and climate variability have significantly altered the regional water cycle over the last century thereby affecting water security at a local to regional scale. Therefore, it is important to investigate how the climate, land use change, and water demand potentially influence the water security by applying the concept of water footprint. An integrated hydrological modeling framework using SWAT (Soil and Water Assessment Tool) model was developed by considering both anthropogenic (e.g. land use change, water demand) and climatic factors to quantify the spatio-temporal variability of water security indicators such as blue water scarcity, green water scarcity, Falkenmark index, and freshwater provision indicators in Savannah River Basin (SRB). The SRB witnesses a significant change in land use land cover (e.g. forest cover, urban area) as well as water demand (e.g. irrigation, livestock production). Overall our results reveal that, SRB witnessed a significant decrease in blue water due to the climate variability indicating that the precipitation has more control over the blue water resources. Whereas, green water was more sensitive to changes in land use pattern. In addition, the magnitude of various water security indicators are different within each county suggesting that water scarcity are controlled by various factors within a region. An integrated assessment of water footprint, environmental flow, anthropogenic factors, and climatic variables can provide useful information on the rising (how and where) of water related risk to human and ecological health. 
    more » « less
  4. The recent decade has witnessed an increase in irrigated acreage in the southeast United States due to the shift in cropping patterns, climatic conditions, and water availability. Peanut, a major legume crop cultivated in Georgia, Southeast United States, has been a staple food in the American household. Regardless of its significant contribution to the global production of peanuts (fourth largest), studies related to local or regional scale water consumption in peanut production and its significant environmental impacts are scarce. Therefore, the present research contributes to the water footprint of peanut crops in eight counties of Georgia and its potential ecological impacts. The impact categories relative to water consumption (water depletion—green and blue water scarcity) and pesticide use (water degradation—potential freshwater ecotoxicity) using crop-specific characterization factors are estimated for the period 2007 to 2017 at the mid-point level. These impacts are transformed into damages to the area of protection in terms of ecosystem quality at the end-point level. This is the first county-wise quantification of the water footprint and its impact assessment using ISO 14046 framework in the southeast United States. The results suggest inter-county differences in water consumption of crops with higher blue water requirements than green and grey water. According to the water footprint analysis of the peanut crop conducted in this study, additional irrigation is recommended in eight Georgia counties. The mid-point level impact assessment owing to water consumption and pesticide application reveals that the potential freshwater ecotoxicity impacts at the planting and growing stages are higher for chemicals with high characterization factors regardless of lower pesticide application rates. Multiple regression analysis indicates blue water, yield, precipitation, maximum surface temperature, and growing degree days are the potential factors influencing freshwater ecotoxicity impacts. Accordingly, a possible impact pathway of freshwater ecotoxicity connecting the inventory flows and the ecosystem quality is defined. This analysis is helpful in the comparative environmental impact assessments for other major crops in Georgia and aids in water resource management decisions. The results from the study could be of great relevance to the southeast United States, as well as other regions with similar climatic zones and land use patterns. The assessment of water use impacts relative to resource availability can assist farmers in determining the timing and layout of crop planting. 
    more » « less
  5. null (Ed.)
    ABSTRACT Water security is a powerful concept that is still in its early days in the field of nutrition. Given the prevalence and severity of water issues and the many interconnections between water and nutrition, we argue that water security deserves attention commensurate with its importance to human nutrition and health. To this end, we first give a brief introduction to water insecurity and discuss its conceptualization in terms of availability, access, use, and stability. We then lay out the empirical grounding for its assessment. Parallels to the food-security literature are drawn throughout, both because the concepts are analogous and food security is familiar to the nutrition community. Specifically, we review the evolution of scales to measure water and food security and compare select characteristics. We then review the burgeoning evidence for the causes and consequences of water insecurity and conclude with 4 recommendations: 1) collect more water-insecurity data (i.e., on prevalence, causes, consequences, and intervention impacts); 2) collect better data on water insecurity (i.e., measure it concurrently with food security and other nutritional indicators, measure intrahousehold variation, and establish baseline indicators of both water and nutrition before interventions are implemented); 3) consider food and water issues jointly in policy and practice (e.g., establish linkages and possibilities for joint interventions, recognize the environmental footprint of nutritional guidelines, strengthen the nutrition sensitivity of water-management practices, and use experience-based scales for improving governance and regulation across food and water systems); and 4) make findings easily available so that they can be used by the media, community organizations, and other scientists for advocacy and in governance (e.g., tracking progress towards development goals and holding implementers accountable). As recognition of the importance of water security grows, we hope that so too will the prioritization of water in nutrition research, funding, and policy. 
    more » « less