skip to main content

Title: A Cloud-Based Evaluation of the National Land Cover Database to Support New Mexico’s Food–Energy–Water Systems
Accurate estimation of land use/land cover (LULC) areas is critical, especially over the semi-arid environments of the southwestern United States where water shortage and loss of rangelands and croplands are affecting the food production systems. This study was conducted within the context of providing an improved understanding of New Mexico’s (NM’s) Food–Energy–Water Systems (FEWS) at the county level. The main goal of this analysis was to evaluate the most important LULC classes for NM’s FEWS by implementing standardized protocols of accuracy assessment and providing bias-corrected area estimates of these classes. The LULC data used in the study was based on National Land Cover Database (NLCD) legacy maps of 1992, 2001, 2006, 2011, and 2016. The analysis was conducted using the cloud-based geospatial processing and modeling tools available from System for Earth Observation Data Access, Processing, and Analysis for Land Monitoring (SEPAL) of the Food and Agricultural Organization. Accuracy assessment, uncertainty analysis, and bias-adjusted area estimates were evaluated by collecting a total of 11,428 reference samples using the Open Foris Collect Earth tool that provided access to high spatial and temporal resolution images available in Google Earth. The reference samples were allocated using a stratified random sampling approach. The results showed more » an overall accuracy that ranged from 71%–100% in all six study counties. The user’s and producer’s accuracy of most LULC classes were about or above 80%. The obtained bias-adjusted area estimates were higher than those based on pixel counting. The bias-adjusted area estimates simultaneously showed decreasing and increasing trends in grassland and shrubland, respectively in four counties that include Curry, Roosevelt, Lea, and Eddy during the 1992–2016 period. Doña Ana county experienced increasing and decreasing trends in grassland and shrubland areas, respectively. San Juan county experienced decreasing trends in both grassland and shrubland areas. Cultivated cropland areas showed decreasing trends in three counties in southeast NM that rely on groundwater resources including Curry, Roosevelt, and Lea. Similarly, cultivated cropland areas showed increasing trends in the other three counties that rely on surface water or conjunctive use of surface and groundwater resources including San Juan, Doña Ana, and Eddy. The use of SEPAL allowed for efficient assessment and production of more accurate bias-adjusted area estimates compared to using pixel counting. Providing such information can help in understanding the behavior of NM’s food production systems including rangelands and croplands, better monitoring and characterizing NM’s FEWS, and evaluating their behavior under changing environmental and climatic conditions. More effort is needed to evaluate the ability of the NLCD data and other similar products to provide more accurate LULC area estimates at local scales. « less
; ; ; ; ;
Award ID(s):
Publication Date:
Journal Name:
Remote Sensing
Page Range or eLocation-ID:
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract
    This data package contains vegetation cover from plots with various levels of herbivore exclusion on the Jornada Experimental Range (JER) and Chihuahuan Desert Rangeland Research Center (CDRRC) in Dona Ana County, southern New Mexico, USA. Study sites were established in 1995; one in black grama grassland and the other in creosotebush shrubland to compare the impact of herbivores on ecosystem processes between these vegetation types. Parallel studies were established at the Sevilleta LTER site (New Mexico, USA) and Mapimi Biosphere Reserve (Durango, Mexico). Each study site is 1 km by 0.5 km in area. Four replicate experimental blocks were randomly located at the grassland study site to measure vegetation responses using exclusion treatments including a) all mammalian herbivores, including cattle, lagomorphs, and rodents, b) lagomorphs and cattle only, c) cattle only, and d) control accessible to all herbivores. Because grazing cattle are excluded from the entire creosote site, only three replicate experimental blocks were randomly located there including a) all mammalian herbivores, including lagomorphs, and rodents, b) lagomorphs only, and c) control accessible to all herbivores. Thirty-six sampling points were positioned at 5.8-meter intervals on a systematically located 6 by 6 point grid within each plot. A permanent one-meterMore>>
  2. Rangelands provide significant socioeconomic and environmental benefits to humans. However, climate variability and anthropogenic drivers can negatively impact rangeland productivity. The main goal of this study was to investigate structural and productivity changes in rangeland ecosystems in New Mexico (NM), in the southwestern United States of America during the 1984–2015 period. This goal was achieved by applying the time series segmented residual trend analysis (TSS-RESTREND) method, using datasets of the normalized difference vegetation index (NDVI) from the Global Inventory Modeling and Mapping Studies and precipitation from Parameter elevation Regressions on Independent Slopes Model (PRISM), and developing an assessment framework. The results indicated that about 17.6% and 12.8% of NM experienced a decrease and an increase in productivity, respectively. More than half of the state (55.6%) had insignificant change productivity, 10.8% was classified as indeterminant, and 3.2% was considered as agriculture. A decrease in productivity was observed in 2.2%, 4.5%, and 1.7% of NM’s grassland, shrubland, and ever green forest land cover classes, respectively. Significant decrease in productivity was observed in the northeastern and southeastern quadrants of NM while significant increase was observed in northwestern, southwestern, and a small portion of the southeastern quadrants. The timing of detected breakpoints coincided withmore »some of NM’s drought events as indicated by the self-calibrated Palmar Drought Severity Index as their number increased since 2000s following a similar increase in drought severity. Some breakpoints were concurrent with some fire events. The combination of these two types of disturbances can partly explain the emergence of breakpoints with degradation in productivity. Using the breakpoint assessment framework developed in this study, the observed degradation based on the TSS-RESTREND showed only 55% agreement with the Rangeland Productivity Monitoring Service (RPMS) data. There was an agreement between the TSS-RESTREND and RPMS on the occurrence of significant degradation in productivity over the grasslands and shrublands within the Arizona/NM Tablelands and in the Chihuahua Desert ecoregions, respectively. This assessment of NM’s vegetation productivity is critical to support the decision-making process for rangeland management; address challenges related to the sustainability of forage supply and livestock production; conserve the biodiversity of rangelands ecosystems; and increase their resilience. Future analysis should consider the effects of rising temperatures and drought on rangeland degradation and productivity.« less
  3. High frequency and spatially explicit irrigated land maps are important for understanding the patterns and impacts of consumptive water use by agriculture. We built annual, 30 m resolution irrigation maps using Google Earth Engine for the years 1986–2018 for 11 western states within the conterminous U.S. Our map classifies lands into four classes: irrigated agriculture, dryland agriculture, uncultivated land, and wetlands. We built an extensive geospatial database of land cover from each class, including over 50,000 human-verified irrigated fields, 38,000 dryland fields, and over 500,000 km 2 of uncultivated lands. We used 60,000 point samples from 28 years to extract Landsat satellite imagery, as well as climate, meteorology, and terrain data to train a Random Forest classifier. Using a spatially independent validation dataset of 40,000 points, we found our classifier has an overall binary classification (irrigated vs. unirrigated) accuracy of 97.8%, and a four-class overall accuracy of 90.8%. We compared our results to Census of Agriculture irrigation estimates over the seven years of available data and found good overall agreement between the 2832 county-level estimates (r 2 = 0.90), and high agreement when estimates are aggregated to the state level (r 2 = 0.94). We analyzed trends over the 33-yearmore »study period, finding an increase of 15% (15,000 km 2 ) in irrigated area in our study region. We found notable decreases in irrigated area in developing urban areas and in the southern Central Valley of California and increases in the plains of eastern Colorado, the Columbia River Basin, the Snake River Plain, and northern California.« less
  4. The National Agricultural Statistics Service, the statistical arm of the US Department of Agriculture, and the Multi-Resolution Land Characteristics Consortium, a group of the US federal agencies, collect and publish several land-use and land-cover data sets. The aim of this study is to analyze the consistency of forestland estimates based on two widely used, publicly available products: the National Land-Cover Database (NLCD) and Cropland Data Layer (CDL). Both remote-sensing-based products provide raster-formatted land-cover categorization at a spatial resolution of 30 m. Although the processing of the yearly published CDL non-agricultural land-cover data is based on less frequently updated NLCD, the consistency of large-area forestland mapping between these two datasets has not been assessed. To assess the similarities and the differences between CDL- and NLCD-based forestland mappings for the state of North Carolina, we overlay the two data products for the years 2011 and 2016 in ArcMap 10.5.1 and analyze the location and attributes of the matched and mismatched forestland. We find that the mismatch is relatively smaller for the areas of the state where forests occupy larger shares of the total land, and that the relative mismatch is smaller in 2011 when compared to 2016. We also find that amore »large portion of the forestland mismatch is attributable to the dynamics of re-growth of periodically harvested and otherwise disturbed forests. Our results underscore the need for a holistic approach to data preparation, data attribution, and data accuracy when performing high-scale map-based analyses using each of these products.« less
  5. Winter wheat is a main cereal crop grown in the United States of America (USA), and the USA is the third largest wheat exporter globally. Timely and reliable in-season forecast and year-end estimation of winter wheat grain production in the USA are needed for regional and global food security. In this study, we assessed the consistency between the agricultural statistical reports and satellite-based data for winter wheat over the contiguous US (CONUS) at both the county and national scales. First, we compared the planted area estimates from the National Agricultural Statistics Service (NASS) and the Cropland Data Layer (CDL) from 2008–2018. Second, we investigated the relationship between gross primary production (GPP) estimated by the vegetation photosynthesis model (VPM) and grain production from the NASS. Lastly, we explored the in-season utility of GPPVPM in monitoring seasonal production. Strong spatiotemporal consistency of planted areas was found between the NASS and CDL datasets. However, in the Southern Great Plains, both the CDL and NASS planted acreage were noticeable larger (>20%) than the NASS harvested area, where some winter wheat fields were used as forage for cattle grazing. County-level GPPVPM was linearly related with grain production of winter wheat, with an R2 value ofmore »0.68 across the CONUS. The relationships between grain production and GPPVPM in those counties without a substantial difference (<20%) between planted and harvested area were much stronger and their harvest index (HIGPP) values ranged from 0.2–0.3. GPPVPM in May could explain about 70–90% of the variance of winter wheat grain production. Our findings highlight the potential of GPPVPM in winter wheat monitoring, especially for those high harvested/planted ratio, which could provide useful data to guide planning and marketing for decision makers, stakeholders, and the public.« less