skip to main content


Title: Active Steady‐State Creep on A Nontectonic Normal Fault in Southeast Utah: Implications for Strain Release in a Rapidly Deforming Salt System
Abstract

Characterizing short‐term temporal variations of fault creep provide insight into the evolution, mechanics, and strength of fault systems. Using spirit leveling and an extensometer, we measured active slip of a surface fault southwest of the Needles District, Canyonlands National Park, Utah, where exteis driven by differential unloading of a subsurface salt layer due to incision of the Colorado River. Results show continuous creep at maximum rates of 0.7 ± 0.2 mm/yr without large temporal variations typical of episodic creep events. Occasional, minor transient events in fault slip velocity coincided with water infiltration; however, we found no significant relation between precipitation and transient events. Detailed mapping of widespread, fault‐parallel sinkholes provide evidence for dilation of faults at shallow depth, a process that lowers fault strength. We propose continuous slip is related to low fault strength and differential unloading, as opposed to other salt systems where dissolution has been linked to episodic slip.

 
more » « less
NSF-PAR ID:
10455784
Author(s) / Creator(s):
 ;  ;  ;  
Publisher / Repository:
DOI PREFIX: 10.1029
Date Published:
Journal Name:
Geophysical Research Letters
Volume:
47
Issue:
11
ISSN:
0094-8276
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    Tectonic faults fail in a continuum of modes from slow earthquakes to elastodynamic rupture. Precursory variations in elastic wavespeed and amplitude, interpreted as indicators of imminent failure, have been observed in limited natural settings and lab experiments where they are thought to arise from contact rejuvenation and microcracking within and around the fault zone. However, the physical mechanisms and connections to fault creep are poorly understood. Here we vary loading stiffness during frictional shear to generate a range of slip modes and measure fault zone properties using transmitted elastic waves. We find that elastic wave amplitudes show clear changes before fault failure. The temporal onset of amplitude reduction scales with lab earthquake magnitude and the magnitude of this reduction varies with fault slip. Our data provide clear evidence of precursors to lab earthquakes and suggest that continuous seismic monitoring could be useful for assessing fault state and seismic hazard potential.

     
    more » « less
  2. Recent seismic and geodetic observations indicate that interseismic creep rate varies in both time and space. The spatial extent of creep pinpoints locked asperities, while its temporary accelerations, known as slow-slip events, may trigger earthquakes. Although the conditions promoting fault creep are well-studied, the mechanisms for initiating episodic slow-slip events are enigmatic. Here we investigate surface deformation measured by radar interferometry along the central San Andreas Fault between 2003 and 2010 to constrain the temporal evolution of creep. We show that slow-slip events are ensembles of localized creep bursts that aseismically rupture isolated fault compartments. Using a rate-and-state friction model, we show that effective normal stress is temporally variable on the fault, and support this using seismic observations. We propose that compaction-driven elevated pore fluid pressure in the hydraulically isolated fault zone and subsequent frictional dilation cause the observed slow-slip episodes. We further suggest that the 2004 Mw 6 Parkfield earthquake might have been triggered by a slow-slip event, which increased the Coulomb failure stress by up to 0.45 bar per year. This implies that while creeping segments are suggested to act as seismic rupture barriers, slow-slip events on these zones might promote seismicity on adjacent locked segments. 
    more » « less
  3. Abstract

    Low‐angle normal faults (LANFs; dip <30°) accommodate kilometers of crustal extension, yet it remains unclear whether these faults can host large earthquakes or if they predominantly creep aseismically. Most active LANFs typically slip at rates of <3 mm/year. Here, we report U‐Th ages from a series of distinct levels of formerly shallow‐living corals killed by uplift‐induced emergence of the footwall of one of the world's fastest‐slipping LANFs, the Mai'iu fault in Papua New Guinea, which slips at rates of 8–12 mm/year. Coral ages and coastal morphology indicate punctuated episodic uplift events consistent with seismic slip on the Mai'iu fault. Maximum episodic uplift increments of 0.5–1.8 m imply earthquakes ofMw > 7. We present the first coral paleoseismological record of normal fault earthquakes, which constrain the timing and surface uplift patterns of multiple LANF seismic cycles and confirm that LANFs can slip in large (Mw > 7) earthquakes.

     
    more » « less
  4. Abstract

    Megathrust earthquakes and their associated tsunamis cause some of the worst natural disasters. In addition to earthquakes, a wide range of slip behaviors are present at subduction zones, including slow earthquakes that span multiple orders of spatial and temporal scales. Understanding these events may shed light on the stress or strength conditions of the megathrust fault. Out of all types of slow earthquakes, very low frequency earthquakes (VLFEs) are most enigmatic because they are difficult to detect reliably, and the physical nature of VLFEs are poorly understood. Here we show three VLFEs in Cascadia that were dynamically triggered by a 2009 Mw 6.9 Canal de Ballenas earthquake in the Gulf of California. The VLFEs likely locate in between the seismogenic zone and the Cascadia episodic tremor and slip (ETS) zone, including one event with a moment magnitude of 5.7. This is the largest VLFE reported to date, causing clear geodetic signals. Our results show that the Cascadia megathrust fault might slip rapidly at some spots in this gap zone, and such a permissible slip behavior has direct seismic hazard implications for coastal communities and perhaps further inland. Further, the observed seismic sources may represent a new class of slip events, whose characteristics do not fit current understandings of slow or regular earthquakes.

     
    more » « less
  5. Abstract

    Slow slip events (SSEs) have been observed in spatial and temporal proximity to megathrust earthquakes in various subduction zones, including the 2014Mw7.3 Guerrero, Mexico earthquake which was preceded by aMw7.6 SSE. However, the underlying physics connecting SSEs to earthquakes remains elusive. Here, we link 3D slow‐slip cycle models with dynamic rupture simulations across the geometrically complex flat‐slab Cocos plate boundary. Our physics‐based models reproduce key regional geodetic and teleseismic fault slip observations on timescales from decades to seconds. We find that accelerating SSE fronts transiently increase shear stress at the down‐dip end of the seismogenic zone, modulated by the complex geometry beneath the Guerrero segment. The shear stresses cast by the migrating fronts of the 2014Mw7.6 SSE are significantly larger than those during the three previous episodic SSEs that occurred along the same portion of the megathrust. We show that the SSE transient stresses are large enough to nucleate earthquake dynamic rupture and affect rupture dynamics. However, additional frictional asperities in the seismogenic part of the megathrust are required to explain the observed complexities in the coseismic energy release and static surface displacements of the Guerrero earthquake. We conclude that it is crucial to jointly analyze the long‐ and short‐term interactions and complexities of SSEs and megathrust earthquakes across several (a)seismic cycles accounting for megathrust geometry. Our study has important implications for identifying earthquake precursors and understanding the link between transient and sudden megathrust faulting processes.

     
    more » « less