skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Seeking the true time: Exploring otolith chemistry as an age‐determination tool
Abstract Fish otoliths' chronometric properties make them useful for age and growth rate estimation in fisheries management. For the Eastern Baltic Sea cod stock (Gadus morhua), unclear seasonal growth zones in otoliths have resulted in unreliable age and growth information. Here, a new age estimation method based on seasonal patterns in trace elemental otolith incorporation was tested for the first time and compared with the traditional method of visually counting growth zones, using otoliths from the Baltic and North seas. Various trace elemental ratios, linked to fish metabolic activity (higher in summer) or external environment (migration to colder, deeper habitats with higher salinity in winter), were tested for age estimation based on assessing their seasonal variations in concentration. Mg:Ca and P:Ca, both proxies for growth and metabolic activity, showed greatest seasonality and therefore have the best potential to be used as chemical clocks. Otolith image readability was significantly lower in the Baltic than in the North Sea. The chemical (novel) method had an overall greater precision and percentage agreement among readers (11.2%, 74.0%) than the visual (traditional) method (23.1%, 51.0%). Visual readers generally selected more highly contrasting zones as annuli whereas the chemical readers identified brighter regions within the first two annuli and darker zones thereafter. Visual estimates produced significantly higher, more variable ages than did the chemical ones. Based on the analyses in our study, we suggest that otolith microchemistry is a promising alternative ageing method for fish populations difficult to age, such as the Eastern Baltic cod.  more » « less
Award ID(s):
1923965
PAR ID:
10455793
Author(s) / Creator(s):
 ;  ;  ;  ;  ;  ;  ;  ;  ;  
Publisher / Repository:
Wiley-Blackwell
Date Published:
Journal Name:
Journal of Fish Biology
Volume:
97
Issue:
2
ISSN:
0022-1112
Page Range / eLocation ID:
p. 552-565
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. null (Ed.)
    Accurate age data are essential for reliable fish stock assessment. Yet many stocks suffer from inconsistencies in age interpretation. A new approach to obtain age makes use of the chemical composition of otoliths. This study validates the periodicity of recurrent patterns in 25 Mg, 31 P, 34 K, 55 Mn, 63 Cu, 64 Zn, 66 Zn, 85 Rb, 88 Sr, 138 Ba, and 208 Pb in Baltic cod (Gadus morhua) otoliths from tag–recapture and known-age samples. Otolith P concentrations showed the highest consistency in seasonality over the years, with minima co-occurring with otolith winter zones in the known-age otoliths and in late winter – early spring when water temperatures are coldest in tagged cod . The timing of minima differs between stocks, occurring around February in western Baltic cod and 1 month later in eastern Baltic cod; seasonal maxima are also stock-specific, occurring in August and October, respectively. The amplitude in P is larger in faster-growing western compared with eastern Baltic cod. Seasonal patterns with minima in winter – late spring were also evident in Mg and Mn, but less consistent over time and fish size than P. Chronological patterns in P, and to a lesser extent Mg and Mn, may have the potential to supplement traditional age estimation or to guide the visual identification of translucent and opaque otolith patterns used in traditional age estimation. 
    more » « less
  2. Chronological records of elemental concentrations in fish otoliths are a widely used tool to infer the environmental conditions experienced by individual fish. To interpret elemental signals within the otolith, it is important to understand how both external and internal factors impact ion uptake, transport and incorporation. In this study, we have combined chronological records from otoliths and archival data storage tags to quantify the influence of internal (sex, size, age, growth) and external (temperature, depth, salinity) conditions on otolith elemental chemistry of cod (Gadus morhua) in natural settings of the Baltic Sea. This study focused on elements primarily under physiological control: Phosphorus (P), magnesium (Mg) and zinc (Zn); and elements under environmental control: Strontium (Sr), barium (Ba) and manganese (Mn). Based on known spatial and temporal patterns in environmental conditions and fish size, growth, and maturity, we posed a series of hypotheses of expected otolith element patterns. Partial effects of internal and external drivers on element concentration were analyzed using a Linear Mixed Model approach with random variables (fish and year). Predicted effects of otolith concentrations of all elements under physiological control (P, Mg, Zn) showed similar trends, with distinct seasonal patterns (lowest concentration in late spring, highest concentrations in winter), and a positive correlation with water temperature, in addition to higher Zn and lower P in spawning individuals. Predicted effects of otolith concentrations of elements expected to be predominantly under environmental control showed the predicted geographic and depth-related trends based on ambient salinity (Ba) and coastal hypoxia (Mn). However, contrary to expectation, Sr was unrelated to salinity. Predicted otolith Ba, Sr and Mn concentrations also exhibited pronounced seasonal patterns that were out of phase with each other but appeared to be partly explained by spawning/feeding migrations. While performing laboratory validation studies for adult fish is typically not possible, these results highlight the importance of assessing local water chemistry and freshwater endmembers in one’s study system before otolith elemental chemistry can be reliably used to reconstruct fish habitat use and environmental histories. 
    more » « less
  3. Abstract Anthropogenic deoxygenation of the Baltic Sea caused major declines in demersal and benthic habitat quality with consequent impacts on biodiversity and ecosystem services. Using Baltic cod otolith chemical proxies of hypoxia, salinity, and fish metabolic status and growth, we tracked changes from baseline conditions in the late Neolithic (4500 BP) and early twentieth century to the present, in order to understand how recent, accelerating climate change has affected this key species. Otolith hypoxia proxies (Mn:Mg) increased with expanding anoxic water volumes, but decreased with increasing salinity indexed by otolith Sr:Ca. Metabolic status proxied by otolith Mg:Ca and reconstructed growth were positively related to dissolved oxygen percent saturation, with particularly severe declines since 2010. This long-term record of otolith indicators provides further evidence of a profound state change in oxygen for the worse, in one of the world’s largest inland seas. Spreading hypoxia due to climate warming will likely impair fish populations globally and evidence can be tracked with otolith chemical biomarkers. 
    more » « less
  4. ABSTRACT ObjectiveThe purpose of this study was to understand the possible provenance of a unique population of Atlantic Cod Gadus morhua that is found in the low-salinity Åland Sea region of the northern Baltic Sea. This population consists of large, healthy individuals, in contrast to the Atlantic Cod in the rest of the Baltic Sea. MethodsWe used laser ablation inductively coupled plasma mass spectrometry to measure levels of boron (as B:Ca) in the otoliths of Atlantic Cod in regions throughout the Baltic Sea. We examined both lifetime chronologies and concentrations in the core region that corresponds to birth and early life. ResultsWe found that B:Ca concentrations were 31 to 348 times higher in the otoliths of cod that occupy the Åland Sea, including in the core region. These concentrations were much higher than expected given that boron is linearly, positively proportional to salinity, which is higher in the southern Baltic Sea, and other populations displayed very low concentrations by comparison. ConclusionsBased on the otolith B:Ca as a unique marker, we suggest that the cod that are sampled in the Åland Sea may be a separate population from those that inhabit the rest of the Baltic Sea. This would not prevent it from mixing with other populations but could point to a separate spawning area. The source of the elevated boron is currently unknown, but the widespread occurrence in cod otoliths from the Åland Sea indicates an extensive nonpoint source. 
    more » « less
  5. Deoxygenation worldwide is increasing in aquatic systems with implications for organisms' biology, communities and ecosystems. Eastern Baltic cod has experienced a strong decline in mean body condition (i.e. weight at a specific length) over the past 20 years with effects on the fishery relying on this resource. The decrease in cod condition has been tentatively linked in the literature to increased hypoxic areas potentially affecting habitat range, but also to benthic prey and/or cod physiology directly. To date, no studies have been performed to test these mechanisms. Using otolith trace element microchemistry and hypoxia-responding metrics based on manganese (Mn) and magnesium (Mg), we investigated the relationship between fish body condition at capture and exposure to hypoxia. Cod individuals collected after 2000 with low body condition had a higher level of Mn/Mg in the last year of life, indicating higher exposure to hypoxic waters than cod with high body condition. Moreover, lifetime exposure to hypoxia was even more strongly correlated to body condition, suggesting that condition may reflect long-term hypoxia status. These results were irrespective of fish age or sex. This implies that as Baltic cod visit poor-oxygen waters, perhaps searching for benthic food, they compromise their own performance. This study specifically sheds light on the mechanisms leading to the low condition of cod and generally points to the impact of deoxygenation on ecosystems and fisheries. 
    more » « less