Abstract Fish otoliths' chronometric properties make them useful for age and growth rate estimation in fisheries management. For the Eastern Baltic Sea cod stock (Gadus morhua), unclear seasonal growth zones in otoliths have resulted in unreliable age and growth information. Here, a new age estimation method based on seasonal patterns in trace elemental otolith incorporation was tested for the first time and compared with the traditional method of visually counting growth zones, using otoliths from the Baltic and North seas. Various trace elemental ratios, linked to fish metabolic activity (higher in summer) or external environment (migration to colder, deeper habitats with higher salinity in winter), were tested for age estimation based on assessing their seasonal variations in concentration. Mg:Ca and P:Ca, both proxies for growth and metabolic activity, showed greatest seasonality and therefore have the best potential to be used as chemical clocks. Otolith image readability was significantly lower in the Baltic than in the North Sea. The chemical (novel) method had an overall greater precision and percentage agreement among readers (11.2%, 74.0%) than the visual (traditional) method (23.1%, 51.0%). Visual readers generally selected more highly contrasting zones as annuli whereas the chemical readers identified brighter regions within the first two annuli and darker zones thereafter. Visual estimates produced significantly higher, more variable ages than did the chemical ones. Based on the analyses in our study, we suggest that otolith microchemistry is a promising alternative ageing method for fish populations difficult to age, such as the Eastern Baltic cod. 
                        more » 
                        « less   
                    
                            
                            Cod otoliths document accelerating climate impacts in the Baltic Sea
                        
                    
    
            Abstract Anthropogenic deoxygenation of the Baltic Sea caused major declines in demersal and benthic habitat quality with consequent impacts on biodiversity and ecosystem services. Using Baltic cod otolith chemical proxies of hypoxia, salinity, and fish metabolic status and growth, we tracked changes from baseline conditions in the late Neolithic (4500 BP) and early twentieth century to the present, in order to understand how recent, accelerating climate change has affected this key species. Otolith hypoxia proxies (Mn:Mg) increased with expanding anoxic water volumes, but decreased with increasing salinity indexed by otolith Sr:Ca. Metabolic status proxied by otolith Mg:Ca and reconstructed growth were positively related to dissolved oxygen percent saturation, with particularly severe declines since 2010. This long-term record of otolith indicators provides further evidence of a profound state change in oxygen for the worse, in one of the world’s largest inland seas. Spreading hypoxia due to climate warming will likely impair fish populations globally and evidence can be tracked with otolith chemical biomarkers. 
        more » 
        « less   
        
    
                            - Award ID(s):
- 1923965
- PAR ID:
- 10525168
- Publisher / Repository:
- Nature Publishing Group
- Date Published:
- Journal Name:
- Scientific Reports
- Volume:
- 14
- Issue:
- 1
- ISSN:
- 2045-2322
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
- 
            
- 
            Marine hypoxia has had major consequences for both economically and ecologically critical fish species around the world. As hypoxic regions continue to grow in severity and extent, we must deepen our understanding of mechanisms driving population and community responses to major stressors. It has been shown that food availability and habitat use are the most critical components of impacts on individual fish leading to observed outcomes at higher levels of organization. However, differences within and among species in partitioning available energy for metabolic demands – or metabolic prioritization – in response to stressors are often ignored. Here, I use both a multispecies size spectrum model and a meta-analysis to explore evidence in favor of metabolic prioritization in a community of commercially important fish species in the Baltic Sea. Modeling results suggest that metabolic prioritization is an important component of the individual response to hypoxia, that it interacts with other components to produce realistic community dynamics, and that different species may prioritize differently. It is thus suggested that declines in feeding activity, assimilation efficiency, and successful reproduction – in addition to low food availability and changing habitat use – are all important drivers of the community response to hypoxia. Meta-analysis results also provide evidence that the dominant predator in the study system prioritizes among metabolic demands, and that these priorities may change as oxygen declines. Going forward, experiments and models should explore how differences in priorities within and among communities drive responses to environmental degradation. This will help management efforts to tailor recovery programs to the physiological needs of species within a given system.more » « less
- 
            Chronological records of elemental concentrations in fish otoliths are a widely used tool to infer the environmental conditions experienced by individual fish. To interpret elemental signals within the otolith, it is important to understand how both external and internal factors impact ion uptake, transport and incorporation. In this study, we have combined chronological records from otoliths and archival data storage tags to quantify the influence of internal (sex, size, age, growth) and external (temperature, depth, salinity) conditions on otolith elemental chemistry of cod (Gadus morhua) in natural settings of the Baltic Sea. This study focused on elements primarily under physiological control: Phosphorus (P), magnesium (Mg) and zinc (Zn); and elements under environmental control: Strontium (Sr), barium (Ba) and manganese (Mn). Based on known spatial and temporal patterns in environmental conditions and fish size, growth, and maturity, we posed a series of hypotheses of expected otolith element patterns. Partial effects of internal and external drivers on element concentration were analyzed using a Linear Mixed Model approach with random variables (fish and year). Predicted effects of otolith concentrations of all elements under physiological control (P, Mg, Zn) showed similar trends, with distinct seasonal patterns (lowest concentration in late spring, highest concentrations in winter), and a positive correlation with water temperature, in addition to higher Zn and lower P in spawning individuals. Predicted effects of otolith concentrations of elements expected to be predominantly under environmental control showed the predicted geographic and depth-related trends based on ambient salinity (Ba) and coastal hypoxia (Mn). However, contrary to expectation, Sr was unrelated to salinity. Predicted otolith Ba, Sr and Mn concentrations also exhibited pronounced seasonal patterns that were out of phase with each other but appeared to be partly explained by spawning/feeding migrations. While performing laboratory validation studies for adult fish is typically not possible, these results highlight the importance of assessing local water chemistry and freshwater endmembers in one’s study system before otolith elemental chemistry can be reliably used to reconstruct fish habitat use and environmental histories.more » « less
- 
            Deoxygenation worldwide is increasing in aquatic systems with implications for organisms' biology, communities and ecosystems. Eastern Baltic cod has experienced a strong decline in mean body condition (i.e. weight at a specific length) over the past 20 years with effects on the fishery relying on this resource. The decrease in cod condition has been tentatively linked in the literature to increased hypoxic areas potentially affecting habitat range, but also to benthic prey and/or cod physiology directly. To date, no studies have been performed to test these mechanisms. Using otolith trace element microchemistry and hypoxia-responding metrics based on manganese (Mn) and magnesium (Mg), we investigated the relationship between fish body condition at capture and exposure to hypoxia. Cod individuals collected after 2000 with low body condition had a higher level of Mn/Mg in the last year of life, indicating higher exposure to hypoxic waters than cod with high body condition. Moreover, lifetime exposure to hypoxia was even more strongly correlated to body condition, suggesting that condition may reflect long-term hypoxia status. These results were irrespective of fish age or sex. This implies that as Baltic cod visit poor-oxygen waters, perhaps searching for benthic food, they compromise their own performance. This study specifically sheds light on the mechanisms leading to the low condition of cod and generally points to the impact of deoxygenation on ecosystems and fisheries.more » « less
- 
            Otolith chemistry has gained increasing attention as a tool for analyzing various aspects of fish biology, such as stock dynamics, migration patterns, hypoxia and pollution exposure, and connectivity between habitats. While these studies often assume otolith elemental concentrations reflect environmental conditions, physiological processes are increasingly recognized as a modulating and/or controlling factor. In particular, biomineralization—the complex, enzyme-regulated construction of CaCO3 crystals scaffolded by proteins—is believed to play a critical role in governing otolith chemical patterns. This review aims to summarize the knowledge on otolith composition and biophysical drivers of biomineralization, present hypotheses on how biomineralization should affect element incorporation, and test the validity thereof with selected case studies. Tracers of environmental history are assumed to be dominated by elements that substitute for Ca during crystal growth or that occur randomly trapped within the crystal lattice. Strontium (Sr) and barium (Ba) largely comply with the biomineralization-based hypotheses that otolith element patterns reflect environmental concentrations, without additional effects of salinity, but can be influenced by physiological processes, typically exhibiting decreasing incorporation with increasing growth. Conversely, tracers of physiology are assumed to be elements under physiological control and primarily occur protein-bound in the otolith’s organic matrix. Physiological tracers are hypothesized to reflect feeding rate and/or growth, decrease with fish age, and exhibit minimal influence of environmental concentration. The candidate elements phosphorus (P), copper (Cu) and zinc (Zn) confirm these hypotheses. Magnesium (Mg) is believed to be randomly trapped in the crystal structure and hence a candidate for environmental reconstruction, but the response to all examined drivers suggest Mg to be coupled to growth. Manganese (Mn) substitutes for Ca, but is also a co-factor in matrix proteins, and therefore exhibits otolith patterns reflecting both environmental (concentration and salinity) and physiological (ontogeny and growth) histories. A consistent temperature response was not evident across studies for either environmental or physiological tracers, presumably attributable to variable relationships between temperature and fish behavior and physiology (e.g., feeding rate, reproduction). Biomineralization thus has a controlling effect on otolith element concentrations for elements that are linked with somatic growth, but not for elements that substitute for Ca in the crystal lattice. Interpretation of the ecological significance of patterns from field samples therefore needs to consider the impact of the underlying biomineralization processes of the element in question as well as physiological processes regulating the availability of ions for inclusion in the growing crystal lattice. Such understanding will enhance the utility of this technique to address fisheries management questions.more » « less
 An official website of the United States government
An official website of the United States government 
				
			 
					 
					
