skip to main content


Title: PRADA: Portable Reusable Accurate Diagnostics with nanostar Antennas for multiplexed biomarker screening
Abstract

Precise monitoring of specific biomarkers in biological fluids with accurate biodiagnostic sensors is critical for early diagnosis of diseases and subsequent treatment planning. In this work, we demonstrated an innovative biodiagnostic sensor, portable reusable accurate diagnostics with nanostar antennas (PRADA), for multiplexed biomarker detection in small volumes (~50 μl) enabled in a microfluidic platform. Here, PRADA simultaneously detected two biomarkers of myocardial infarction, cardiac troponin I (cTnI), which is well accepted for cardiac disorders, and neuropeptide Y (NPY), which controls cardiac sympathetic drive. In PRADA immunoassay, magnetic beads captured the biomarkers in human serum samples, and gold nanostars (GNSs) “antennas” labeled with peptide biorecognition elements and Raman tags detected the biomarkers via surface‐enhanced Raman spectroscopy (SERS). The peptide‐conjugated GNS‐SERS barcodes were leveraged to achieve high sensitivity, with a limit of detection (LOD) of 0.0055 ng/ml of cTnI, and a LOD of 0.12 ng/ml of NPY comparable with commercially available test kits. The innovation of PRADA was also in the regeneration and reuse of the same sensor chip for ~14 cycles. We validated PRADA by testing cTnI in 11 de‐identified cardiac patient samples of various demographics within a 95% confidence interval and high precision profile. We envision low‐cost PRADA will have tremendous translational impact and be amenable to resource‐limited settings for accurate treatment planning in patients.

 
more » « less
Award ID(s):
1634856
NSF-PAR ID:
10455808
Author(s) / Creator(s):
 ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  
Publisher / Repository:
Wiley Blackwell (John Wiley & Sons)
Date Published:
Journal Name:
Bioengineering & Translational Medicine
Volume:
5
Issue:
3
ISSN:
2380-6761
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    Multiplexed computational sensing with a point‐of‐care serodiagnosis assay to simultaneously quantify three biomarkers of acute cardiac injury is demonstrated. This point‐of‐care sensor includes a paper‐based fluorescence vertical flow assay (fxVFA) processed by a low‐cost mobile reader, which quantifies the target biomarkers through trained neural networks, all within <15 min of test time using 50 µL of serum sample per patient. This fxVFA platform is validated using human serum samples to quantify three cardiac biomarkers, i.e., myoglobin, creatine kinase‐MB, and heart‐type fatty acid binding protein, achieving less than 0.52 ng mL−1limit‐of‐detection for all three biomarkers with minimal cross‐reactivity. Biomarker concentration quantification using the fxVFA that is coupled to neural network‐based inference is blindly tested using 46 individually activated cartridges, which shows a high correlation with the ground truth concentrations for all three biomarkers achieving >0.9 linearity and <15% coefficient of variation. The competitive performance of this multiplexed computational fxVFA along with its inexpensive paper‐based design and handheld footprint makes it a promising point‐of‐care sensor platform that can expand access to diagnostics in resource‐limited settings.

     
    more » « less
  2. Paper-based biosensors are a potential paradigm of sensitivity achieved via microporous spreading/microfluidics, simplicity, and affordability. In this paper, we develop decorated paper with graphene and conductive polymer (herein referred to as graphene conductive polymer paper-based sensor or GCPPS) for sensitive detection of biomolecules. Planetary mixing resulted in uniformly dispersed graphene and conductive polymer ink, which was applied to laser-cut Whatman filter paper substrates. Scanning electron microscopy and Raman spectroscopy showed strong attachment of conductive polymer-functionalized graphene to cellulose fibers. The GCPPS detected dopamine and cytokines, such as tumor necrosis factor-alpha (TNF-α), and interleukin 6 (IL-6) in the ranges of 12.5–400 µM, 0.005–50 ng/mL, and 2 pg/mL–2 µg/mL, respectively, using a minute sample volume of 2 µL. The electrodes showed lower detection limits (LODs) of 3.4 µM, 5.97 pg/mL, and 9.55 pg/mL for dopamine, TNF-α, and IL-6 respectively, which are promising for rapid and easy analysis for biomarkers detection. Additionally, these paper-based biosensors were highly selective (no serpin A1 detection with IL-6 antibody) and were able to detect IL-6 antigen in human serum with high sensitivity and hence, the portable, adaptable, point-of-care, quick, minute sample requirement offered by our fabricated biosensor is advantageous to healthcare applications.

     
    more » « less
  3. Fentanyl and fentanyl analogs are the main cause of recent overdose deaths in the United States. The presence of fentanyl analogs in illicit drugs makes it difficult to estimate their potencies. This makes the detection and differentiation of fentanyl analogs critically significant. Surface-enhanced Raman spectroscopy (SERS) can differentiate structurally similar fentanyl analogs by yielding spectroscopic fingerprints for the detected molecules. In previous years, five fentanyl analogs, carfentanil, furanyl fentanyl, acetyl fentanyl, 4-fluoroisobutyryl fentanyl (4-FIBF), and cyclopropyl fentanyl (CPrF), gained popularity and were found in 76.4% of the fentanyl analogs trafficked. In this study, we focused on 4-FIBF, CPrF, and structurally similar fentanyl analogs. We developed methods to differentiate these fentanyl analogs using theoretical and experimental methods. To do this, a set of fentanyl analogs were examined using density functional theory (DFT) calculations. The DFT results obtained in this project permitted the assignment of spectral bands. These results were then compared with normal Raman and SERS techniques. Structurally similar fentanyl analogs show important differences in their spectra, and they have been visually differentiated from each other both theoretically and experimentally. Additional results using principal component analysis and soft independent modeling of class analogy show they can be distinguished using this technique. The limit of detection values for FIBF and CPrF were determined to be 0.35 ng/mL and 4.4 ng/mL, respectively, using SERS. Experimental results obtained in this project can be readily implemented in field applications and smaller laboratories, where inexpensive portable Raman spectrometers are often present and used in drug analysis.

     
    more » « less
  4. Abstract

    Precise diagnosis and immunity to viruses, such as severe acute respiratory syndrome coronavirus 2 (SARS‐CoV‐2) and Middle East respiratory syndrome coronavirus (MERS‐CoV) is achieved by the detection of the viral antigens and/or corresponding antibodies, respectively. However, a widely used antigen detection methods, such as polymerase chain reaction (PCR), are complex, expensive, and time‐consuming Furthermore, the antibody test that detects an asymptomatic infection and immunity is usually performed separately and exhibits relatively low accuracy. To achieve a simplified, rapid, and accurate diagnosis, we have demonstrated an indium gallium zinc oxide (IGZO)‐based biosensor field‐effect transistor (bio‐FET) that can simultaneously detect spike proteins and antibodies with a limit of detection (LOD) of 1 pg mL–1and 200 ng mL–1, respectively using a single assay in less than 20 min by integrating microfluidic channels and artificial neural networks (ANNs). The near‐sensor ANN‐aided classification provides high diagnosis accuracy (>93%) with significantly reduced processing time (0.62%) and energy consumption (5.64%) compared to the software‐based ANN. We believe that the development of rapid and accurate diagnosis system for the viral antigens and antibodies detection will play a crucial role in preventing global viral outbreaks.

    image

     
    more » « less
  5. Recently there has been upsurge in reports that illicit seizures of cocaine and heroin have been adulterated with fentanyl. Surface-enhanced Raman spectroscopy (SERS) provides a useful alternative to current screening procedures that permits detection of trace levels of fentanyl in mixtures. Samples are solubilized and allowed to interact with aggregated colloidal nanostars to produce a rapid and sensitive assay. In this study, we present the quantitative determination of fentanyl in heroin and cocaine using SERS, using a point-and-shoot handheld Raman system. Our protocol is optimized to detect pure fentanyl down to 0.20 ± 0.06 ng/mL and can also distinguish pure cocaine and heroin at ng/mL levels. Multiplex analysis of mixtures is enabled by combining SERS detection with principal component analysis and super partial least squares regression discriminate analysis (SPLS-DA), which allow for the determination of fentanyl as low as 0.05% in simulated seized heroin and 0.10% in simulated seized cocaine samples. 
    more » « less