skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: The Lack of QBO‐MJO Connection in CMIP6 Models
Abstract Observational analysis has indicated a strong connection between the stratospheric quasi‐biennial oscillation (QBO) and tropospheric Madden‐Julian oscillation (MJO), with MJO activity being stronger during the easterly phase than the westerly phase of the QBO. We assess the representation of this QBO‐MJO connection in 30 models participating in the Coupled Model Intercomparison Project 6. While some models reasonably simulate the QBO during boreal winter, none of them capture a difference in MJO activity between easterly and westerly QBO that is larger than that which would be expected from the random sampling of internal variability. The weak signal of the simulated QBO‐MJO connection may be due to the weaker amplitude of the QBO than observed, especially between 100 to 50 hPa. This weaker amplitude in the models is seen both in the QBO‐related zonal wind and temperature, the latter of which is thought to be critical for destabilizing tropical convection.  more » « less
Award ID(s):
1652289
PAR ID:
10455834
Author(s) / Creator(s):
 ;  ;  ;  
Publisher / Repository:
DOI PREFIX: 10.1029
Date Published:
Journal Name:
Geophysical Research Letters
Volume:
47
Issue:
11
ISSN:
0094-8276
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. null (Ed.)
    Abstract The stratospheric quasi-biennial oscillation (QBO) induces temperature anomalies in the lower stratosphere and tropical tropopause layer (TTL) that are cold when lower-stratospheric winds are easterly and warm when winds are westerly. Recent literature has indicated that these QBO temperature anomalies are potentially important in influencing the tropical troposphere, and particularly in explaining the relationship between the QBO and the Madden–Julian oscillation (MJO). The authors examine the variability of QBO temperature anomalies across several time scales using reanalysis and observational datasets. The authors find that, in boreal winter relative to other seasons, QBO temperature anomalies are significantly stronger (i.e., colder in the easterly phase of the QBO and warmer in the westerly phase of the QBO) on the equator, but weaker off the equator. The equatorial and subtropical changes compensate such that meridional temperature gradients and thus (by thermal wind balance) equatorial zonal wind anomalies do not vary in amplitude as the temperature anomalies do. The same pattern of stronger on-equatorial and weaker off-equatorial QBO temperature anomalies is found on decadal time scales: stronger anomalies are seen for 1999–2019 compared to 1979–99. The causes of these changes to QBO temperature anomalies, as well as their possible relevance to the MJO–QBO relationship, are not known. 
    more » « less
  2. null (Ed.)
    Abstract Observational studies show a strong connection between the intraseasonal Madden-Julian oscillation (MJO) and the stratospheric quasi-biennial oscillation (QBO): the boreal winter MJO is stronger, more predictable, and has different teleconnections when the QBO in the lower stratosphere is easterly versus westerly. Despite the strength of the observed connection, global climate models do not produce an MJO-QBO link. Here the authors use a current-generation ocean-atmosphere coupled NASA Goddard Institute for Space Studies global climate model (Model E2.1) to examine the MJO-QBO link. To represent the QBO with minimal bias, the model zonal mean stratospheric zonal and meridional winds are relaxed to reanalysis fields from 1980-2017. The model troposphere, including the MJO, is allowed to freely evolve. The model with stratospheric nudging captures QBO signals well, including QBO temperature anomalies. However, an ensemble of nudged simulations still lacks an MJO-QBO connection. 
    more » « less
  3. Abstract A modulation has been identified of the tropical Madden‐Julian oscillation (MJO) by the stratospheric quasi‐biennial oscillation (QBO) such that the MJO in boreal winter is ∼40% stronger and persists ∼10 days longer during the easterly QBO phase (QBOE) than during the westerly phase. A proposed mechanism is reductions of tropical lower stratospheric static stability during QBOE caused by (a) the QBO induced meridional circulation; and (b) QBO influences on extratropical wave forcing of the stratospheric residual meridional circulation during early winter. Here, long‐term variability of the QBO‐MJO connection and associated variability of near‐tropopause tropical static stability and extratropical wave forcing are investigated using European Center reanalysis data for the 1959–2021 period. During the most reliable (post‐satellite) part of the record beginning in 1979, a strengthening of the QBO‐MJO modulation has occurred during a time when tropical static stability in the lowermost stratosphere and uppermost troposphere has been decreasing and extratropical wave forcing in early winter has been increasing. A high inverse correlation (R = −0.87) is obtained during this period between early winter wave forcing anomalies and wintertime tropical lower stratospheric static stability. Regression relationships are used to show that positive trends in early winter wave forcing during this period have likely contributed to decreases in tropical static stability, favoring a stronger QBO‐MJO connection. As shown in previous work, increased sea level pressure anomalies over northern Eurasia produced by Arctic sea ice loss may have been a significant source of the observed positive trends in early winter wave forcing. 
    more » « less
  4. Abstract This work presents the first lidar observations of a Quasi‐Biennial Oscillation (QBO) in the interannual variations of stratospheric gravity wave potential energy density (Epmin 30–50 km) at McMurdo (77.84°S, 166.67°E), Antarctica. This paper also reports the first identification of QBO signals in the distance between McMurdo and the polar vortex edge. Midwinter stratospheric gravity wave activity is stronger during the QBO easterly phase when the June polar vortex expands and the polar night jet shifts equatorward. During the QBO westerly phase, gravity wave activity is weaker when the polar vortex contracts and the polar night jet moves poleward. Nine years of lidar data (2011–2019) exhibit the meanEpmwinter maxima being ~43% higher during QBO easterly than westerly. The June polar vortex edge at 45 km altitude moves equatorward/poleward during QBO easterly/westerly phases with ~8° latitude differences (39.7°S vs. 47.7°S) as revealed in 21 years of MERRA‐2 data (1999–2019). We hypothesize that an equatorward shifted polar vortex corresponds to less critical level filtering of gravity waves and thus higherEpmat McMurdo. The critical level filtering is characterized by wind rotation angle (WRA), and we find a linear correlation between the WRA andEpminterannual variations. The results suggest that the QBO is likely controlling the interannual variations of theEpmwinter maxima over McMurdo via the critical level filtering. This observationally based study lays the groundwork for a rigorous numerical study that will provide robust statistics to better understand the mechanisms that link the tropical QBO to extratropical waves. 
    more » « less
  5. Cheng, Y; Fu, R; Randel, B (Ed.)
    A connection between the quasi‐biennial oscillation (QBO), solar variability, and the short‐term convective climate oscillation, the Madden‐Julian oscillation (MJO), in boreal winter has been found in observational data, yet it is generally lacking in current global climate models (GCMs). A proposed mechanism is changes in tropical lower stratospheric upwelling rates and static stability caused by QBO and solar UV effects on extratropical wave forcing of the stratospheric residual meridional circulation (the Brewer‐Dobson circulation). The extent to which this mechanism, which operates only in boreal winter and enhances similar effects of the QBO‐induced meridional circulation, is simulated in a series of GCMs participating in the Coupled Model Intercomparison Project 6 (CMIP6) is investigated. The models are found to be often lacking complete representation of several elements of the mechanism, with particular issues being QBOs that are westerly biased and weak in the lower stratosphere, insufficient solar or QBO modulation of extratropical wave activity (the Holton‐Tan effect), too weak reductions in equatorial tropopause static stability in response to extratropical wave forcing, and MJOs that in some cases do not respond to these reductions. Through bypassing many of these deficiencies via data selection, it is demonstrated that effects on the MJO that resemble those found in observations (strengthening of the MJO following early winter sudden stratospheric warmings and during easterly QBO winters) can be simulated by a subset of the models. This supports operation of the proposed mechanism, and points to needed model improvements, although caveats exist and further work is needed. 
    more » « less