A central challenge in global change research is the projection of the future behavior of a system based upon past observations. Tree‐ring data have been used increasingly over the last decade to project tree growth and forest ecosystem vulnerability under future climate conditions. But how can the response of tree growth to past climate variation predict the future, when the future does not look like the past? Space‐for‐time substitution (SFTS) is one way to overcome the problem of extrapolation: the response at a given location in a warmer future is assumed to follow the response at a warmer location today. Here we evaluated an SFTS approach to projecting future growth of Douglas‐fir (
- Award ID(s):
- 1802893
- PAR ID:
- 10455835
- Author(s) / Creator(s):
- ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; more »
- Publisher / Repository:
- Wiley-Blackwell
- Date Published:
- Journal Name:
- Global Change Biology
- Volume:
- 26
- Issue:
- 9
- ISSN:
- 1354-1013
- Format(s):
- Medium: X Size: p. 5146-5163
- Size(s):
- p. 5146-5163
- Sponsoring Org:
- National Science Foundation
More Like this
-
Proxy records from the late Quaternary help in understanding climate variability on extended time scales. An ancient landslide deposit in Oregon U.S.A. preserved large logs from Douglas fir trees (Pseudotsuga menziesii (Mirb.) Franco) and afforded an opportunity to explore the response of tree growth to climate on annual and decadal scales. High-precision radiocarbon dating indicates an age exceeding 63 ka, i.e., the trees grew within the generally cool Marine Isotope Stage 5 (MIS 5), likely during a warmer interval optimal for Douglas fir establishment. This would include the prolonged warm MIS 5e (ca. 110–130 ka), corresponding approximately to the Eemian interglacial, which was warm like the current Holocene interglacial. A 297-year tree-ring width chronology from 12 Douglas fir logs and 227-year tree-ring δ13C and δ18O records are analyzed with spectral and wavelet analysis. Variance of the ancient rings is consistent with modern Douglas fir growth sensitive to moisture and ecological disturbances. Spectra of ancient and modern chronologies are dominated by low frequencies with significant spectral peaks appearing at high frequencies (2.1–4 years) and cyclic behavior transient over centuries. It is conceivable that the O-isotopes track moisture and that C-isotopes track temperature or sunlight. The findings illustrate the challenges in assessing the response of ancient tree-ring properties to late Quaternary climate variability.more » « less
-
Abstract Legacies of past climate conditions and historical management govern forest productivity and tree growth. Understanding how these processes interact and the timescales over which they influence tree growth is critical to assess forest vulnerability to climate change. Yet, few studies address this issue, likely because integrated long-term records of both growth and forest management are uncommon. We applied the stochastic antecedent modelling (SAM) framework to annual tree-ring widths from mixed forests to recover the ecological memory of tree growth. We quantified the effects of antecedent temperature and precipitation up to 4 years preceding the year of ring formation and integrated management effects with records of harvesting intensity from historical forest management archives. The SAM approach uncovered important time periods most influential to growth, typically the warmer and drier months or seasons, but variation among species and sites emerged. Silver fir responded primarily to past climate conditions (25–50 months prior to the year of ring formation), while European beech and Scots pine responded mostly to climate conditions during the year of ring formation and the previous year, although these responses varied among sites. Past management and climate interacted in such a way that harvesting promoted growth in young silver fir under wet and warm conditions and in old European beech under drier and cooler conditions. Our study shows that the ecological memory associated with climate legacies and historical forest management is species-specific and context-dependent, suggesting that both aspects are needed to properly evaluate forest functioning under climate change.
-
Abstract In this study, we report 20 years of data from three ponderosa pine plantations in northern California. Our sites span a natural gradient of forest productivity where climate variability and edaphic conditions delineate marked differences in baseline productivity (approximately threefold). Experimental herbicide application and fertilization significantly reduced competition and improved tree growth by 1.4‐ to 2.2‐fold across sites. At the site of lowest productivity, where soils are poorly developed and water limiting, tree growth increased strongly in response to understory suppression. Small but significant improvements in tree growth were observed in response to understory suppression at the moderate‐productivity site. At the site of highest productivity, where climate is favorable and soils well developed, fertilization increased productivity to a greater extent than did understory suppression. In most cases, the effect of understory suppression and fertilization caused an unexpected growth release, exceeding the anticipated maximum productivity by >5 m of additional height and 60–100% more basal area. At the site of highest productivity, however, understory suppression caused a weak increase on late‐season growth compared to fertilization alone, suggesting a beneficial effect of understory vegetation on long‐term growth at that site. Tree ring cellulose carbon isotopes indicate a negative relationship between intrinsic water use efficiency (iWUE) and tree growth in control stands, which shifted to a positive relationship as both iWUE and tree growth increased in response to management. Cellulose oxygen isotope ratios (δ18O) were positively correlated with iWUE and negatively correlated with vapor pressure deficit across sites, but δ18O was not a strong predictor of tree growth.
-
Abstract Aim Previous work demonstrated the global variability of synchrony in tree growth within populations, that is, the covariance of the year‐to‐year variability in growth of individual neighbouring trees. However, there is a lack of knowledge about the causes of this variability and its trajectories through time. Here, we examine whether climate can explain variation in within‐population synchrony (WPS) across space but also through time and we develop models capable of explaining this variation. These models can be applied to the global tree cover under current and future climate change scenarios.
Location Global.
Time period 1901–2012.
Major taxa studied Trees.
Methods We estimated WPS values from a global tree‐ring width database consisting of annual growth increment measurements from multiple trees at 3,579 sites. We used generalized linear mixed effects models to infer the drivers of WPS variability and temporal trends of global WPS. We then predicted WPS values across the global extent of tree cover. Finally, we applied our model to predict future WPS based on the RCP 8.5 (2045–2065 period) emission scenario.
Results Areas with the highest WPS are characterized by a combination of environments with both high mean annual temperature (>10°C) and low precipitation (<300 mm). Average WPS across all temperate forests has decreased historically and will continue to decrease. Potential implications of these patterns include changes in forest dynamics, such as higher tree growth and productivity and an increase in carbon sequestration. In contrast, the WPS of tropical forests of Central and South America will increase in the near future owing to reduced annual precipitation.
Main conclusions Climate explains WPS variability in space and time. We suggest that WPS might have value as an integrative ecological measure of the level of environmental stress to which forests are subjected and therefore holds potential for diagnosing effects of global climate change on tree growth.
-
Abstract Process-based models of tree-ring width are used both for reconstructing past climates and for projecting changes in growth due to climate change. Since soil moisture observations are unavailable at appropriate spatial and temporal scales, these models generally rely on simple water budgets driven in part by temperature-based potential evapotranspiration (PET) estimates, but the choice of PET model could have large effects on simulated soil moisture, moisture stress, and radial growth. Here, I use four different PET models to drive the VS-Lite model and evaluate the extent to which they differ in both their ability to replicate observed growth variability and their simulated responses to projected 21st century warming. Across more than 1200 tree-ring width chronologies in the conterminous United States, there were no significant differences among the four PET models in their ability to replicate observed radial growth, but the models differed in their responses to 21st century warming. The temperature-driven empirical PET models (Thornthwaite and Hargreaves) simulated much larger warming-induced increases in PET and decreases in soil moisture than the more physically realistic PET models (Priestley–Taylor and Penman–Monteith). In cooler and more mesic regions with relatively minimal moisture constraints to growth, the models simulated similarly small reductions in growth with increased warming. However, in dry regions, the Thornthwaite- and Hargreaves-driven VS-Lite models simulated an increase in moisture stress roughly double that of the Priestley–Taylor and Penman–Monteith models, which also translated to larger simulated declines in radial growth under warming. While the lack of difference in the models’ ability to replicate observed radial growth variability is an encouraging sign for some applications (e.g. attributing changes in growth to specific climatic drivers), the large differences in model responses to warming suggest that caution is needed when applying the temperature-driven PET models to climatic conditions with large trends in temperature.more » « less