skip to main content


Title: Modeling tree radial growth in a warming climate: where, when, and how much do potential evapotranspiration models matter?
Abstract Process-based models of tree-ring width are used both for reconstructing past climates and for projecting changes in growth due to climate change. Since soil moisture observations are unavailable at appropriate spatial and temporal scales, these models generally rely on simple water budgets driven in part by temperature-based potential evapotranspiration (PET) estimates, but the choice of PET model could have large effects on simulated soil moisture, moisture stress, and radial growth. Here, I use four different PET models to drive the VS-Lite model and evaluate the extent to which they differ in both their ability to replicate observed growth variability and their simulated responses to projected 21st century warming. Across more than 1200 tree-ring width chronologies in the conterminous United States, there were no significant differences among the four PET models in their ability to replicate observed radial growth, but the models differed in their responses to 21st century warming. The temperature-driven empirical PET models (Thornthwaite and Hargreaves) simulated much larger warming-induced increases in PET and decreases in soil moisture than the more physically realistic PET models (Priestley–Taylor and Penman–Monteith). In cooler and more mesic regions with relatively minimal moisture constraints to growth, the models simulated similarly small reductions in growth with increased warming. However, in dry regions, the Thornthwaite- and Hargreaves-driven VS-Lite models simulated an increase in moisture stress roughly double that of the Priestley–Taylor and Penman–Monteith models, which also translated to larger simulated declines in radial growth under warming. While the lack of difference in the models’ ability to replicate observed radial growth variability is an encouraging sign for some applications (e.g. attributing changes in growth to specific climatic drivers), the large differences in model responses to warming suggest that caution is needed when applying the temperature-driven PET models to climatic conditions with large trends in temperature.  more » « less
Award ID(s):
2001753
NSF-PAR ID:
10332656
Author(s) / Creator(s):
Date Published:
Journal Name:
Environmental Research Letters
Volume:
16
Issue:
8
ISSN:
1748-9326
Page Range / eLocation ID:
084017
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract Aim

    We examined whether and how tree radial‐growth responses to climate have changed for the world's southernmost conifer species throughout its latitudinal distribution following rapid climate change in the second half of the 20th century.

    Location

    Temperate forests in southern South America.

    Methods

    New and existing tree‐ring radial growth chronologies representing the entire latitudinal range ofPilgerodendron uviferumwere grouped according to latitude and then examined for differences in growth trends and non‐stationarity in growth responses to a drought severity index (scPDSI) over the 1900–1993ADperiod and also before and after significant shifts in climate in the 1950s and 1970s.

    Results

    The radial‐growth response ofP. uviferumclimate was highly variable across its full latitudinal distribution. There was a long‐term and positive association between radial growth and higher moisture at the northern and southern edges of the distribution of this species and the opposite relationship for the core of its distribution, especially following the climatic shifts of the 1950s and 1970s. In addition, non‐stationarity in moisture‐radial growth relationships was observed in all three latitudinal groups (southern and northern edges and core) for all seasons during the 20th century.

    Main conclusions

    Climate shifts in southern South America in the 1950s and 1970s resulted in different responses in the mean radial growth ofP. uviferumat the southern and northern edges and at the core of its range. Dendroclimatic analyses document that during the first half of the 20th century climate‐growth relationships were relatively similar between the southern and northern range edges but diverged after the 1950s. Our findings imply that simulated projections of climate impacts on tree growth, and by implication on forest ecosystem productivity, derived from models of past climate‐growth relationships need to carefully consider different and non‐stationarity responses along the wide latitudinal distribution of this species.

     
    more » « less
  2. Abstract Drought is projected to become more severe and widespread as global warming continues in the 21 st century, but hydroclimatic changes and their drivers are not well examined in the latest projections from the Phase Six of the Coupled Model Inetercomparison Project (CMIP6). Here, precipitation (P), evapotranspiration (E), soil moisture (SM), and runoff (R) from 25 CMIP6 models, together with self-calibrated Palmer Drought Severity Index with Penman-Monteith potential evapotranspiration (scPDSIpm), are analyzed to quantify hydroclimatic and drought changes in the 21 st century and the underlying causes. Results confirm consistent drying in these hydroclimatic metrics across most of the Americas (including the Amazon), Europe and the Mediterranean region, southern Africa, and Australia; although the drying magnitude differs, with the drying being more severe and widespread in surface SM than in total SM. Global drought frequency based on surface SM and scPDSIpm increases by ~25%–100% (50%–200%) under the SSP2-4.5 (SSP5-8.5) scenario in the 21 st century together with large increases in drought duration and areas, which result from a decrease in the mean and flattening of the probability distribution functions of SM and scPDSIpm; while the R-based drought changes are relatively small. Changes in both P and E contribute to the SM change, whereas scPDSIpm decreases result from ubiquitous PET increases and P decreases over subtropical areas. The R changes are determined primarily by P changes, while the PET change explains most of the E increase. Inter-model spreads in surface SM and R changes are large, leading to large uncertainties in the drought projections. 
    more » « less
  3. Abstract

    Climate change has contributed to recent declines in mountain snowpack and earlier runoff, which in turn have intensified hydrological droughts in western North America. Climate model projections suggest that continued and severe snowpack reductions are expected over the 21st century, with profound consequences for ecosystems and human welfare. Yet the current understanding of trends and variability in mountain snowpack is limited by the relatively short and strongly temperature forced observational record. Motivated by the urgent need to better understand snowpack dynamics in a long-term, spatially coherent framework, here we examine snow-growth relationships in western North American tree-ring chronologies. We present an extensive network of snow-sensitive proxy data to support high space/time resolution paleosnow reconstruction, quantify and interpret the type and spatial density of snow related signals in tree-ring records, and examine the potential for regional bias in the tree-ring based reconstruction of different snow drought types (dry versus warm). Our results indicate three distinct snow-growth relationships in tree-ring chronologies: moisture-limited snow proxies that include a spring temperature signal, moisture-limited snow proxies lacking a spring temperature signal, and energy-limited snow proxies. Each proxy type is based on distinct physiological tree-growth mechanisms related to topographic and climatic site conditions, and provides unique information on mountain snowpack dynamics that can be capitalized upon within a statistical reconstruction framework. This work provides a platform and foundational background required for the accelerated production of high-quality annually resolved snowpack reconstructions from regional to high (<12 km) spatial scales in western North America and, by extension, will support an improved understanding of the vulnerability of snowmelt-derived water resources to natural variability and future climate warming.

     
    more » « less
  4. Severe and persistent 21st-century drought in southwestern North America (SWNA) motivates comparisons to medieval megadroughts and questions about the role of anthropogenic climate change. We use hydrological modeling and new 1200-year tree-ring reconstructions of summer soil moisture to demonstrate that the 2000–2018 SWNA drought was the second driest 19-year period since 800 CE, exceeded only by a late-1500s megadrought. The megadrought-like trajectory of 2000–2018 soil moisture was driven by natural variability superimposed on drying due to anthropogenic warming. Anthropogenic trends in temperature, relative humidity, and precipitation estimated from 31 climate models account for 47% (model interquartiles of 35 to 105%) of the 2000–2018 drought severity, pushing an otherwise moderate drought onto a trajectory comparable to the worst SWNA megadroughts since 800 CE. 
    more » « less
  5. Abstract

    Much is still unknown about the growth and physiological responses of trees to global change at the northern treeline. We combined tree‐ring width data with century‐long stable carbon and oxygen isotope records to investigate growth and physiological responses of white spruce at two treeline sites in the Canadian Arctic to concurrent increases in temperature, atmospheric CO2concentration (ca), and decline in sea ice extent over the past century. The tree‐ring records were assessed during three periods with contrasting climatic conditions: (a) the early 20th century warming, (b) the 1940–1970 cooling period, and (c) the anthropogenic late 20th century warming period. We found opposing growth trends between the two sites, but similar carbon isotope discrimination (Δ13C) and intrinsic water‐use efficiency (iWUE) trajectories. While tree growth (defined as basal area increment) increased at the site nearer to the Arctic Ocean during the 20th century following the rise in temperature and sea ice loss, growth declined after 1950 at the more interior site. At both sites, Δ13C slightly increased over these periods. However, trees showed a nonlinear response to increasedca, shifting after 1970 from a passive stomatal response (i.e., no changes iniWUE) to an active response (i.e., a moderate ∼12% increase iniWUE). Further, our isotope‐based findings do not support the idea that temperature‐induced drought stress caused the divergent growth trends at our treeline sites. This study thus highlights nonlinear and complex physiological and growth adjustments to concomitant changes in temperature, sea ice extent, andcaover the last century at the northern treeline.

     
    more » « less