skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Increased Flood Exposure Due to Climate Change and Population Growth in the United States
Abstract Precipitation extremes are increasing globally due to anthropogenic climate change. However, there remains uncertainty regarding impacts upon flood occurrence and subsequent population exposure. Here, we quantify changes in population exposure to flood hazard across the contiguous United States. We combine simulations from a climate model large ensemble and a high‐resolution hydrodynamic flood model—allowing us to directly assess changes across a wide range of extreme precipitation magnitudes and accumulation timescales. We report a mean increase in the 100‐year precipitation event of ~20% (magnitude) and >200% (frequency) in a high warming scenario, yielding a ~30–127% increase in population exposure. We further find a nonlinear increase for the most intense precipitation events—suggesting accelerating societal impacts from historically rare or unprecedented precipitation events in the 21st century.  more » « less
Award ID(s):
1854940 1854761
PAR ID:
10455849
Author(s) / Creator(s):
 ;  ;  ;  ;  ;  
Publisher / Repository:
DOI PREFIX: 10.1029
Date Published:
Journal Name:
Earth's Future
Volume:
8
Issue:
11
ISSN:
2328-4277
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract Exposure to sea-level rise (SLR) and flooding will make some areas uninhabitable, and the increased demand for housing in safer areas may cause displacement through economic pressures. Anticipating such direct and indirect impacts of SLR is important for equitable adaptation policies. Here we build upon recent advances in flood exposure modeling and social vulnerability assessment to demonstrate a framework for estimating the direct and indirect impacts of SLR on mobility. Using two spatially distributed indicators of vulnerability and exposure, four specific modes of climate mobility are characterized: (1) minimally exposed to SLR (Stable), (2) directly exposed to SLR with capacity to relocate (Migrating), (3) indirectly exposed to SLR through economic pressures (Displaced), and (4) directly exposed to SLR without capacity to relocate (Trapped). We explore these dynamics within Miami-Dade County, USA, a metropolitan region with substantial social inequality and SLR exposure. Social vulnerability is estimated by cluster analysis using 13 social indicators at the census tract scale. Exposure is estimated under increasing SLR using a 1.5 m resolution compound flood hazard model accounting for inundation from high tides and rising groundwater and flooding from extreme precipitation and storm surge. Social vulnerability and exposure are intersected at the scale of residential buildings where exposed population is estimated by dasymetric methods. Under 1 m SLR, 56% of residents in areas of low flood hazard may experience displacement, whereas 26% of the population risks being trapped (19%) in or migrating (7%) from areas of high flood hazard, and concerns of depopulation and fiscal stress increase within at least 9 municipalities where 50% or more of their total population is exposed to flooding. As SLR increases from 1 to 2 m, the dominant flood driver shifts from precipitation to inundation, with population exposed to inundation rising from 2.8% to 54.7%. Understanding shifting geographies of flood risks and the potential for different modes of climate mobility can enable adaptation planning across household-to-regional scales. 
    more » « less
  2. Abstract Climate change is expected to increase the global occurrence and intensity of heatwaves, extreme precipitation, and flash droughts. However, it is not well understood how the compound heatwave, extreme precipitation, and flash drought events will likely change, and how global population, agriculture, and forest will likely be exposed to these compound events under future climate change scenarios. This research uses eight CMIP6 climate models to assess the current and future global compound climate extreme events, as well as population, agriculture, and forestry exposures to these events, under two climate scenarios, Shared Socioeconomic Pathways (SSP), SSP1‐2.6 and SSP5‐8.5 for three time periods: early‐, mid‐, and late‐ 21st century. Climate extremes are derived for heatwaves, extreme precipitation, and flash droughts using locational‐dependent thresholds. We find that compound heatwaves and flash drought events result in the largest increases in exposure of populations, agriculture, and forest lands, under SSP5‐8.5 late‐century projections of sequential heatwaves and flash droughts. Late‐century projections of sequential heatwaves and flash droughts show hot spots of exposure increases in population exposure greater than 50 million person‐events in China, India, and Europe; increases in agriculture land exposures greater than 90 thousand km2‐events in China, South America, and Oceania; and increase in forest land exposure greater than 120 thousand km2‐events in Oceania and South America regions when compared to the historical period. The findings from this study can be potentially useful for informing global climate adaptations. 
    more » « less
  3. Abstract ContextWildland-urban interface (WUI) areas are facing increased forest fire risks and extreme precipitation events due to climate change, which can lead to post-fire flood events. The city of Flagstaff in northern Arizona, USA experienced WUI forest thinning, fire, and record rainfall events, which collectively contributed to large floods and damages to the urban neighborhoods and city infrastructure. ObjectivesWe demonstrate multi-temporal, high resolution image applications from an unoccupied aerial vehicle (UAV) and terrestrial lidar in estimating landscape disturbance impacts within the WUI. Changes in forest vegetation and bare ground cover in WUIs are particularly challenging to estimate with coarse-resolution satellite images due to fine-scale landscape processes and changes that often result in mixed pixels. MethodsUsing Sentinel-2 satellite images, we document forest fire impacts and burn severity. Using 2016 and 2021 UAV multispectral images and Structure-from-Motion data, we estimate post-thinning changes in forest canopy cover, patch sizes, canopy height distribution, and bare ground cover. Using repeat lidar data within a smaller area of the watershed, we quantify geomorphic effects in the WUI associated with the fire and subsequent flooding. ResultsWe document that thinning significantly reduced forest canopy cover, patch size, tree density, and mean canopy height resulting in substantially reduced active crown fire risks in the future. However, the thinning equipment ignited a forest fire, which burned the WUI at varying severity at the top of the watershed that drains into the city. Moderate-high severity burns occurred within 3 km of downtown Flagstaff threatening the WUI neighborhoods and the city. The upstream burned area then experienced 100-year and 200–500-year rainfall events, which resulted in large runoff-driven floods and sedimentation in the city. ConclusionWe demonstrate that UAV high resolution images and photogrammetry combined with terrestrial lidar data provide detailed and accurate estimates of forest thinning and post-fire flood impacts, which could not be estimated from coarser-resolution satellite images. Communities around the world may need to prepare their WUIs for catastrophic fires and increase capacity to manage sediment-laden stormwater since both fires and extreme weather events are projected to increase. 
    more » « less
  4. While recent increases in heavy precipitation events in some midlatitude regions are consistent with climate model simulations, evidence of such increases in high latitudes is more tenuous, partly because of data limitations. The present study evaluates historical and future changes in extreme precipitation events in Alaska. Using the ERA5 reanalysis, station data, and output from two downscaled global climate models, we examine precipitation-driven flood events at five diverse locations in Alaska where major historical floods provide benchmarks: Fairbanks (August 1967), Seward (October 1986), Allakaket/Bettles (August 1994), Kivalina (August 2012), and Haines (December 2020). We place these precipitation events into a framework of historical trends and end-of-century (2065–2100) model projections. In all but one of the flood events, the amount of rainfall was the highest on record for the event duration, and precipitation events of this magnitude are generally projected by the models to remain infrequent. All of the cases had subtropical or tropical moisture sources. None of the locations show statistically significant historical trends in the magnitude of extreme precipitation events. However, the frequencies of heavy precipitation events are projected to increase at most of the locations. The frequency of events with 2 year and 5 year historical return intervals is projected to become more frequent, especially in the Interior, and in some cases increase to several times per year. Decreases are projected only for Seward along Alaska’s southern coast. 
    more » « less
  5. Abstract Estimates of changes in the frequency or height of contemporary extreme sea levels (ESLs) under various climate change scenarios are often used by climate and sea level scientists to help communicate the physical basis for societal concern regarding sea level rise. Changes in ESLs (i.e., the hazard) are often represented using various metrics and indicators that, when anchored to salient impacts on human systems and the natural environment, provide useful information to policy makers, stakeholders, and the general public. While changes in hazards are often anchored to impacts at local scales, aggregate global summary metrics generally lack the context of local exposure and vulnerability that facilitates translating hazards into impacts. Contextualizing changes in hazards is also needed when communicating the timing of when projected ESL frequencies cross critical thresholds, such as the year in which ESLs higher than the design height benchmark of protective infrastructure (e.g., the 100-year water level) are expected to occur within the lifetime of that infrastructure. We present specific examples demonstrating the need for such contextualization using a simple flood exposure model, local sea level rise projections, and population exposure estimates for 414 global cities. We suggest regional and global climate assessment reports integrate global, regional, and local perspectives on coastal risk to address hazard, vulnerability and exposure simultaneously. 
    more » « less