skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Award ID contains: 1854940

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract Precipitation extremes are increasing globally due to anthropogenic climate change. However, there remains uncertainty regarding impacts upon flood occurrence and subsequent population exposure. Here, we quantify changes in population exposure to flood hazard across the contiguous United States. We combine simulations from a climate model large ensemble and a high‐resolution hydrodynamic flood model—allowing us to directly assess changes across a wide range of extreme precipitation magnitudes and accumulation timescales. We report a mean increase in the 100‐year precipitation event of ~20% (magnitude) and >200% (frequency) in a high warming scenario, yielding a ~30–127% increase in population exposure. We further find a nonlinear increase for the most intense precipitation events—suggesting accelerating societal impacts from historically rare or unprecedented precipitation events in the 21st century. 
    more » « less