Abstract Long‐term studies of wild animals provide the opportunity to investigate how phenotypic plasticity is used to cope with environmental fluctuations and how the relationships between phenotypes and fitness can be dependent upon the ecological context.Many previous studies have only investigated life‐history plasticity in response to changes in temperature, yet wild animals often experience multiple environmental fluctuations simultaneously. This requires field experiments to decouple which ecological factor induces plasticity in fitness‐relevant traits to better understand their population‐level responses to those environmental fluctuations.For the past 32 years, we have conducted a long‐term integrative study of individually marked North American red squirrelsTamiasciurus hudsonicusErxleben in the Yukon, Canada. We have used multi‐year field experiments to examine the physiological and life‐history responses of individual red squirrels to fluctuations in food abundance and conspecific density.Our long‐term observational study and field experiments show that squirrels can anticipate increases in food availability and density, thereby decoupling the usual pattern where animals respond to, rather than anticipate, an ecological change.As in many other study systems, ecological factors that can induce plasticity (such as food and density) covary. However, our field experiments that manipulate food availability and social cues of density (frequency of territorial vocalizations) indicate that increases in social (acoustic) cues of density in the absence of additional food can induce similar life‐history plasticity, as does experimental food supplementation.Changes in the levels of metabolic hormones (glucocorticoids) in response to variation in food and density are one mechanism that seems to induce this adaptive life‐history plasticity.Although we have not yet investigated the energetic response of squirrels to elevated density or its association with life‐history plasticity, energetics research in red squirrels has overturned several standard pillars of knowledge in physiological ecology.We show how a tractable model species combined with integrative studies can reveal how animals cope with resource fluctuations through life‐history plasticity.
more »
« less
Movement rules determine nomadic species' responses to resource supplementation and degradation
Abstract In environments that vary unpredictably, many animals are nomadic, moving in an irregular pattern that differs from year to year. Exploring the mechanisms of nomadic movement is needed to understand how animals survive in highly variable environments, and to predict behavioural and population responses to environmental change.We developed a network model to identify plausible mechanisms of nomadic animal movement by comparing the performance of multiple movement rules along a continuum from nomadism to residency. Using simulations and analytical results, we explored how different types of habitat modifications (that augment or decrease resource availability) might affect the abundance and movement rates of animals following each of these rules.Movement rules for which departure from patches depended on resource availability and/or competition performed almost equally well and better than residency or uninformed movement under most conditions, even though animals using each rule moved at substantially different rates. Habitat modifications that stabilized resources, either by resource supplementation or degradation, eroded the benefits of informed nomadic movements, particularly for movements based on resource availability alone.These results suggest that simple movement rules can explain nomadic animal movements and determine species’ responses to environmental change. In particular, landscape stabilization and supplementation might be useful strategies for promoting populations of resident animals, but would be less beneficial for managing highly mobile species, many of which are threatened by habitat disruption and changes in climate.
more »
« less
- Award ID(s):
- 1754392
- PAR ID:
- 10455866
- Publisher / Repository:
- Wiley-Blackwell
- Date Published:
- Journal Name:
- Journal of Animal Ecology
- Volume:
- 89
- Issue:
- 11
- ISSN:
- 0021-8790
- Page Range / eLocation ID:
- p. 2644-2656
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Abstract The potential for animals to modify spatial patterns of nutrient limitation for autotrophs and habitat availability for other members of their communities is increasingly recognized. However, net trophic effects of consumers acting as ecosystem engineers remain poorly known. The American AlligatorAlligator mississippiensisis an abundant predator capable of dramatic modifications of physical habitat through the creation and maintenance of pond‐like basins, but its role in influencing community structure and nutrient dynamics is less appreciated.We investigated if alligators engineer differences in nutrient availability and changes to community structure by their creation of ‘alligator ponds’ compared to the surrounding phosphorus (P)‐limited oligotrophic marsh.We used a halo sampling design of three distinct habitats extending outward from 10 active alligator ponds across a hydrological gradient in the Everglades, USA. We performed nutrient analysis on basal food‐web resources and quantitative community analyses, and stoichiometric analyses on plants and animals.Our findings demonstrate that alligators act as ecosystem engineers and enhance food‐web heterogeneity by increasing nutrient availability, manipulating physical structure and altering algal, plant and animal communities. Flocculent detritus, an unconsolidated layer of particulate organic matter and soil, showed strong patterns of P enrichment in ponds. Higher P availability in alligator ponds also resulted in bottom‐up trophic transfer of nutrients as evidenced by higher growth rates (lower N:P) for plants and aquatic consumers. Edge habitats surrounding alligator ponds contained the most diverse communities of invertebrates and plants, but low total abundance of fishes, likely driven by high densities of emergent macrophytes. Pond communities exhibited higher abundance of fish compared to edge habitat and were dominated by compositions of small invertebrates that track high nutrient availability in the water column. Marshes contained high numbers of animals that are closely tied to periphyton mats, which were absent from other habitats.Alligator‐engineered habitats are ecologically important by providing nutrient‐enriched ‘hotspots’ in an oligotrophic system, habitat heterogeneity to marshes, and refuges for other fauna during seasonal disturbances. This work adds to growing evidence that efforts to model community dynamics should routinely consider animal‐mediated bottom‐up processes like ecosystem engineering.more » « less
-
Abstract Animal space use and spatial overlap can have important consequences for population‐level processes such as social interactions and pathogen transmission. Identifying how environmental variability and inter‐individual variation affect spatial patterns and in turn influence interactions in animal populations is a priority for the study of animal behaviour and disease ecology. Environmental food availability and macroparasite infection are common drivers of variation, but there are few experimental studies investigating how they affect spatial patterns of wildlife.Bank voles (Clethrionomys glareolus) are a tractable study system to investigate spatial patterns of wildlife and are amenable to experimental manipulations. We conducted a replicated, factorial field experiment in which we provided supplementary food and removed helminths in vole populations in natural forest habitat and monitored vole space use and spatial overlap using capture–mark–recapture methods.Using network analysis, we quantified vole space use and spatial overlap. We compared the effects of food supplementation and helminth removal and investigated the impacts of season, sex and reproductive status on space use and spatial overlap.We found that food supplementation decreased vole space use while helminth removal increased space use. Space use also varied by sex, reproductive status and season. Spatial overlap was similar between treatments despite up to threefold differences in population size.By quantifying the spatial effects of food availability and macroparasite infection on wildlife populations, we demonstrate the potential for space use and population density to trade‐off and maintain consistent spatial overlap in wildlife populations. This has important implications for spatial processes in wildlife including pathogen transmission.more » « less
-
null (Ed.)Abstract Background Mobile animals transport nutrients and propagules across habitats, and are crucial for the functioning of food webs and for ecosystem services. Human activities such as urbanization can alter animal movement behavior, including site fidelity and resource use. Because many urban areas are adjacent to natural sites, mobile animals might connect natural and urban habitats. More generally, understanding animal movement patterns in urban areas can help predict how urban expansion will affect the roles of highly mobile animals in ecological processes. Methods Here, we examined movements by a seasonally nomadic wading bird, the American white ibis ( Eudocimus albus ), in South Florida, USA. White ibis are colonial wading birds that forage on aquatic prey; in recent years, some ibis have shifted their behavior to forage in urban parks, where they are fed by people. We used a spatial network approach to investigate how individual movement patterns influence connectivity between urban and non-urban sites. We built a network of habitat connectivity using GPS tracking data from ibis during their non-breeding season and compared this network to simulated networks that assumed individuals moved indiscriminately with respect to habitat type. Results We found that the observed network was less connected than the simulated networks, that urban-urban and natural-natural connections were strong, and that individuals using urban sites had the least-variable habitat use. Importantly, the few ibis that used both urban and natural habitats contributed the most to connectivity. Conclusions Habitat specialization in urban-acclimated wildlife could reduce the exchange of propagules and nutrients between urban and natural areas, which has consequences both for beneficial effects of connectivity such as gene flow and for detrimental effects such as the spread of contaminants or pathogens.more » « less
-
Abstract Energetic resources and habitat distribution are inherently linked. Energetic resource availability is a major driver of the distribution of consumers, but estimating how much specific habitats contribute to the energetic resource needs of a consumer can be problematic.We present a new approach that combines remote sensing information and stable isotope ecology to produce maps of energetic resources (E‐scapes).E‐scapes project species‐specific resource use information onto the landscape to classify areas based on energetic importance.Using ourE‐scapes, we investigated the relationship between energetic resource distribution and white shrimp distribution and how the scale used to generate theE‐scape mediated this relationship.E‐scapes successfully predicted the size, abundance, biomass, and total energy of a consumer in salt marsh habitats in coastal Louisiana, USA at scales relevant to the movement of the consumer.OurE‐scape maps can be used alone or in combination with existing models to improve habitat management and restoration practices and have potential to be used to test fundamental movement theory.more » « less