Abstract Rechargeable alkali metal anodes hold the promise to significantly increase the energy density of current battery technologies. But they are plagued by dendritic growths and solid‐electrolyte interphase (SEI) layers that undermine the battery safety and cycle life. Here, a non‐porous ingot‐type sodium (Na) metal growth with self‐modulated shiny‐smooth interfaces is reported for the first time. The Na metal anode can be cycled reversibly, without forming whiskers, mosses, gas bubbles, or disconnected metal particles that are usually observed in other studies. The ideal interfacial stability confirmed in the microcapillary cells is the key to enable anode‐free Na metal full cells with a capacity retention rate of 99.93% per cycle, superior to available anode‐free Na and Li batteries using liquid electrolytes. Contradictory to the common beliefs established around alkali metal anodes, there is no repeated SEI formation on or within the sodium anode, supported by the X‐ray photoelectron spectroscopy elemental depth profile analyses, electrochemical impedance spectroscopy diagnosis, and microscopic imaging.
more »
« less
Review of Emerging Concepts in SEI Analysis and Artificial SEI Membranes for Lithium, Sodium, and Potassium Metal Battery Anodes
Abstract Anodes for lithium metal batteries, sodium metal batteries, and potassium metal batteries are susceptible to failure due to dendrite growth. This review details the structure–chemistry–performance relations in membranes that stabilize the anodes’ solid electrolyte interphase (SEI), allowing for stable electrochemical plating/stripping. Case studies involving Li, Na, and K are presented to illustrate key concepts. “Classical” versus “modern” understandings of the SEI are described, with an emphasis on the new structural insights obtained through novel analytical techniques, including in situ liquid‐secondary ion mass spectroscopy, titration gas chromatography, and tip‐enhanced Raman spectroscopy. This Review highlights diverse approaches for increasing SEI stability, either by inserting a secondary layer between the native SEI and the separator, or by combining the membrane with a native SEI to form a hybrid composite. Exciting and nonintuitive findings are discussed, such as that the metal anode roughness profoundly affects the SEI structure and stability, or that organic artificial SEI‐layers may be more effective than the native inorganic–organic SEIs. Emerging multifunctional architectures are presented, which serve a dual role as metal hosts and metal surface protection layers. Throughout the Review, fruitful future research directions and the critical areas where there is incomplete understanding are discussed.
more »
« less
- Award ID(s):
- 1911905
- PAR ID:
- 10455893
- Publisher / Repository:
- Wiley Blackwell (John Wiley & Sons)
- Date Published:
- Journal Name:
- Advanced Energy Materials
- Volume:
- 10
- Issue:
- 43
- ISSN:
- 1614-6832
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
The performance of Li metal batteries is tightly coupled to the composition and properties of the solid electrolyte interphase (SEI). Even though the role of the SEI in battery function is well understood (e.g., it must be electronically insulating and ionically conductive, it must enable uniform Li+ flux to the electrode to prevent filament growth, it must accommodate the large volume changes of Li electrodeposition), the challenges associated with probing this delicate composite layer have hindered the development of Li metal batteries for practical applications. In this review, we detail how nuclear magnetic resonance (NMR) spectroscopy can help bridge this gap in characterization due to its unique ability to describe local structure (e.g., changes in crystallite size and amorphous species in the SEI) in conjunction with ion dynamics while connecting these properties to electrochemical behavior. By leveraging NMR, we can gain molecular-level insight to aid in the design of Li surfaces and enable reactive anodes for next-generation, high-energy-density batteries.more » « less
-
Abstract The interrelation is explored between external pressure (0.1, 1, and 10 MPa), solid electrolyte interphase (SEI) structure/morphology, and lithium metal plating/stripping behavior. To simulate anode‐free lithium metal batteries (AF‐LMBs) analysis is performed on “empty” Cu current collectors in standard carbonate electrolyte. Lower pressure promotes organic‐rich SEI and macroscopically heterogeneous, filament‐like Li electrodeposits interspersed with pores. Higher pressure promotes inorganic F‐rich SEI with more uniform and denser Li film. A “seeding layer” of lithiated pristine graphene (pG@Cu) favors an anion‐derived F‐rich SEI and promotes uniform metal electrodeposition, enabling extended electrochemical stability at a lower pressure. State‐of‐the‐art electrochemical performance is achieved at 1MPa: pG‐enabled half‐cell is stable after 300 h (50 cycles) at 1 mA cm−2rate −3 mAh cm−2capacity (17.5 µm plated/stripped), with cycling Coulombic efficiency (CE) of 99.8%. AF‐LMB cells with high mass loading NMC622 cathode (21 mg cm−2) undergo 200 cycles with a CE of 99.4% at C/5‐charge and C/2‐discharge (1C = 178 mAh g−1). Density functional theory (DFT) highlights the differences in the adsorption energy of solvated‐Li+onto various crystal planes of Cu (100), (110), and (111), versus lithiated/delithiated (0001) graphene, giving insight regarding the role of support surface energetics in promoting SEI heterogeneity.more » « less
-
The poor interfacial stability of Li metal leads to formation of unstable solid-electrolyte interphases (SEIs) and severely limits its practical applications. Protecting Li metal with an artificial SEI that has balanced stability, conductivity and mechanical strength is critical. Here we demonstrate a design strategy for stabilizing Li using Mo 6 S 8 /carbon artificial SEI films. These films are directly coated on Li foil and the Mo 6 S 8 particles provide ordered conduction channels for fast but regulated Li-ion flux, and provide hybrid anodes that have nearly four times higher exchange current densities. They also have seamless contact with Li metal and protect it from parasitic reactions, and hence significantly improve its stability. Consequently, Li metal batteries in which the hybrid anodes were paired with LiNi 0.8 Mn 0.1 Co 0.1 O 2 cathodes (3.0 mA h per cell) exhibited significantly improved cycling stability (63% vs. 25% retention) and a stabilized Li interphase compared with pristine Li anodes.more » « less
-
Despite numerous reported lithium metal batteries (LMBs) with excellent cycling performance achieved in labs, transferring the high performing LMBs from lab-scale to industrial-production remains challenging. Therefore, via imitating the stand-still process in battery production, a conventional but important procedure, to investigate the formation and evolution of a solid electrolyte interface (SEI) is particularly important for LMBs. Our previous studies indicate that zein (corn protein)-modified carbonate-ester electrolyte (the most commercialized) effectively improves the performance of LMBs through guiding Li- ions and repairing cracked SEI. Herein, we investigate the formation and evolution of the protein-modified SEIs on Li anodes by imitating the stand-still temperature and duration. A simulation study on the protein denaturation in the electrolyte under different temperatures demonstrates a highly unfolded configuration at elevated temperatures. The experiments show that this heat-treated-zein (H-zein) modified SEI forms quickly and becomes stable after a stand-still process of less than 100 min. Moreover, the H-zein SEI exhibits excellent wetting behavior with the electrolyte due to the highly unfolded protein structures with more functional groups exposed. The Li|Li cell with the H-zein SEI achieves prolonged cycling performance (>360 h vs. 260 h of the cell with the untreated-zein (U-zein) modified SEI). The LiFePO4|Li cell with the H-zein SEI shows much stable long-term cycling performance of capacity retention (70% vs. 42% of the cell with U-zein SEI) after 200 cycles. This study confirms that the appropriately treated protein is able to effectively improve the performance of LMBs, and will inspire future studies for the production process of LMBs toward their commercialization.more » « less
An official website of the United States government
