skip to main content

Attention:

The NSF Public Access Repository (NSF-PAR) system and access will be unavailable from 11:00 PM ET on Thursday, October 10 until 2:00 AM ET on Friday, October 11 due to maintenance. We apologize for the inconvenience.


This content will become publicly available on November 27, 2024

Title: Interrelation Between External Pressure, SEI Structure, and Electrodeposit Morphology in an Anode‐Free Lithium Metal Battery
Abstract

The interrelation is explored between external pressure (0.1, 1, and 10 MPa), solid electrolyte interphase (SEI) structure/morphology, and lithium metal plating/stripping behavior. To simulate anode‐free lithium metal batteries (AF‐LMBs) analysis is performed on “empty” Cu current collectors in standard carbonate electrolyte. Lower pressure promotes organic‐rich SEI and macroscopically heterogeneous, filament‐like Li electrodeposits interspersed with pores. Higher pressure promotes inorganic F‐rich SEI with more uniform and denser Li film. A “seeding layer” of lithiated pristine graphene (pG@Cu) favors an anion‐derived F‐rich SEI and promotes uniform metal electrodeposition, enabling extended electrochemical stability at a lower pressure. State‐of‐the‐art electrochemical performance is achieved at 1MPa: pG‐enabled half‐cell is stable after 300 h (50 cycles) at 1 mA cm−2rate −3 mAh cm−2capacity (17.5 µm plated/stripped), with cycling Coulombic efficiency (CE) of 99.8%. AF‐LMB cells with high mass loading NMC622 cathode (21 mg cm−2) undergo 200 cycles with a CE of 99.4% at C/5‐charge and C/2‐discharge (1C = 178 mAh g−1). Density functional theory (DFT) highlights the differences in the adsorption energy of solvated‐Li+onto various crystal planes of Cu (100), (110), and (111), versus lithiated/delithiated (0001) graphene, giving insight regarding the role of support surface energetics in promoting SEI heterogeneity.

 
more » « less
Award ID(s):
1938833
NSF-PAR ID:
10476046
Author(s) / Creator(s):
 ;  ;  ;  ;  ;  ;  ;  
Publisher / Repository:
Wiley Blackwell (John Wiley & Sons)
Date Published:
Journal Name:
Advanced Energy Materials
ISSN:
1614-6832
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    Metallic lithium is the most competitive anode material for next‐generation lithium (Li)‐ion batteries. However, one of its major issues is Li dendrite growth and detachment, which not only causes safety issues, but also continuously consumes electrolyte and Li, leading to low coulombic efficiency (CE) and short cycle life for Li metal batteries. Herein, the Li dendrite growth of metallic lithium anode is suppressed by forming a lithium fluoride (LiF)‐enriched solid electrolyte interphase (SEI) through the lithiation of surface‐fluorinated mesocarbon microbeads (MCMB‐F) anodes. The robust LiF‐enriched SEI with high interfacial energy to Li metal effectively promotes planar growth of Li metal on the Li surface and meanwhile prevents its vertical penetration into the LiF‐enriched SEI from forming Li dendrites. At a discharge capacity of 1.2 mAh cm−2, a high CE of >99.2% for Li plating/stripping in FEC‐based electrolyte is achieved within 25 cycles. Coupling the pre‐lithiated MCMB‐F (Li@MCMB‐F) anode with a commercial LiFePO4cathode at the positive/negative (P/N) capacity ratio of 1:1, the LiFePO4//Li@MCMB‐F cells can be charged/discharged at a high areal capacity of 2.4 mAh cm−2for 110 times at a negligible capacity decay of 0.01% per cycle.

     
    more » « less
  2. In the presence of Lewis acid salts, the cyclic ether, dioxolane (DOL), is known to undergo ring-opening polymerization inside electrochemical cells to form solid-state polymer batteries with good interfacial charge-transport properties. Here we report that LiNO3, which is unable to ring-open DOL, possesses a previously unknown ability to coordinate with and strain DOL molecules in bulk liquids, completely arresting their crystallization. The strained DOL electrolytes exhibit physical properties analogous to amorphous polymers, including a prominent glass transition, elevated moduli, and low activation entropy for ion transport, but manifest unusually high, liquidlike ionic conductivities (e.g., 1 mS/cm) at temperatures as low as −50 °C. Systematic electrochemical studies reveal that the electrolytes also promote reversible cycling of Li metal anodes with high Coulombic efficiency (CE) on both conventional planar substrates (1 mAh/cm2over 1,000 cycles with 99.1% CE; 3 mAh/cm2over 300 cycles with 99.2% CE) and unconventional, nonplanar/three-dimensional (3D) substrates (10 mAh/cm2over 100 cycles with 99.3% CE). Our finding that LiNO3promotes reversibility of Li metal electrodes in liquid DOL electrolytes by a physical mechanism provides a possible solution to a long-standing puzzle in the field about the versatility of LiNO3salt additives for enhancing reversibility of Li metal electrodes in essentially any aprotic liquid electrolyte solvent. As a first step toward understanding practical benefits of these findings, we create functional Li||lithium iron phosphate (LFP) batteries in which LFP cathodes with high capacity (5 to 10 mAh/cm2) are paired with thin (50 μm) lithium metal anodes, and investigate their galvanostatic electrochemical cycling behaviors.

     
    more » « less
  3. Suffering from critical instability of lithium (Li) anode, the most commercial electrolytes, carbonate-ester electrolytes, have been restrictedly used in high-energy Li metal batteries (LMBs) despite of their broad implementation in lithium-ion batteries. Here, abundant, natural corn protein, zein, is exploited as a novel additive to stabilize Li anode and effectively prolong the cycling life of LMBs based on carbonate-ester electrolyte. It is discovered that the denatured zein is involved in the formation of solid electrolyte interphase (SEI), guides Li+ deposition and repairs the cracked SEI. In specific, the zein-rich SEI benefits the anion immobilization, enabling uniform Li+ deposition to diminish dendrite growth; the preferential zein-Li reaction effectively repairs the cracked SEI, protecting Li from parasite reactions. The resulting symmetrical Li cell exhibits a prolonged cycling life to over 350 h from <200 h for pristine cell at 1 mA cm􀀀 2 with a capacity of 1 mAh cm^ 2. Paired with LiFePO4 cathode, zein additive markedly improves the electrochemical performance including a higher capacity of 130.1 mAh g^ 1 and a higher capacity retention of ~ 80 % after 200 cycles at 1 C. This study demonstrates a natural protein to be an effective additive for the most commercial electrolytes for advancing performance of LMBs. 
    more » « less
  4. It has been widely suggested in literature that a lithium fluoride (LiF)-rich solid electrolyte interphase (SEI) affects Coulombic efficiency (CE) of the Li metal anode used with liquid electrolytes. Yet, the influence of LiF on Li metal deposition has been challenging to examine. Herein, we developed a method to synthesize LiF nanoscale particles with tunable sizes (30–300 nm) on Cu electrodes by electrochemical reduction of fluorinated gases under controlled discharge rates and capacities. The impact of LiF nanoparticles on overpotential and morphology of Li deposition was further studied in a conventional carbonate electrolyte. By cyclic voltammetry, Li plating overpotentials exhibit a clear correlation with the total surface area of LiF particles. Additionally, Li metal deposits (10μAh cm−2) nucleated under galvanostatic conditions (0.5 mA cm−2) on Cu/LiF showed increasing feature sizes with a lower average LiF particle size and higher coverage of LiF. However, no significant improvement in CE was observed for LiF-coated Cu. Our findings provide evidence that a particle-based mode of SEI fluorination can influence early-stage Li nucleation to a modest degree, and this effect is maximized when LiF is uniformly and densely distributed. However, sparser and larger LiF have vanishing or even detrimental effect on cycling performance.

     
    more » « less
  5. Abstract

    A new concentrated ternary salt ether‐based electrolyte enables stable cycling of lithium metal battery (LMB) cells with high‐mass‐loading (13.8 mg cm−2, 2.5 mAh cm−2) NMC622 (LiNi0.6Co0.2Mn0.2O2) cathodes and 50 μm Li anodes. Termed “CETHER‐3,” this electrolyte is based on LiTFSI, LiDFOB, and LiBF4with 5 vol% fluorinated ethylene carbonate in 1,2‐dimethoxyethane. Commercial carbonate and state‐of‐the‐art binary salt ether electrolytes were also tested as baselines. With CETHER‐3, the electrochemical performance of the full‐cell battery is among the most favorably reported in terms of high‐voltage cycling stability. For example, LiNixMnyCo1–xyO2(NMC)‐Li metal cells retain 80% capacity at 430 cycles with a 4.4 V cut‐off and 83% capacity at 100 cycles with a 4.5 V cut‐off (charge at C/5, discharge at C/2). According to simulation by density functional theory and molecular dynamics, this favorable performance is an outcome of enhanced coordination between Li+and the solvent/salt molecules. Combining advanced microscopy (high‐resolution transmission electron microscopy, scanning electron microscopy) and surface science (X‐ray photoelectron spectroscopy, time‐of‐fight secondary ion mass spectroscopy, Fourier‐transform infrared spectroscopy, Raman spectroscopy), it is demonstrated that a thinner and more stable cathode electrolyte interphase (CEI) and solid electrolyte interphase (SEI) are formed. The CEI is rich in lithium sulfide (Li2SO3), while the SEI is rich in Li3N and LiF. During cycling, the CEI/SEI suppresses both the deleterious transformation of the cathode R‐3m layered near‐surface structure into disordered rock salt and the growth of lithium metal dendrites.

     
    more » « less