skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Examples and Conjectures on the Regularity of Solutions to Balance Laws
The paper discusses various regularity properties for solutions to a scalar, 1-dimensional conservation law with strictly convex flux and integrable source. In turn, these yield compactness estimates on the solution set. Similar properties are expected to hold for 2 x 2 genuinely nonlinear systems.  more » « less
Award ID(s):
2006884
PAR ID:
10455940
Author(s) / Creator(s):
; ; ; ;
Date Published:
Journal Name:
Quarterly of applied mathematics
Volume:
81
Issue:
3
ISSN:
1552-4485
Page Range / eLocation ID:
433–454
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. This Review highlights basic and transition metal conducting and semiconducting oxides. We discuss their material and electronic properties with an emphasis on the crystal, electronic, and band structures. The goal of this Review is to present a current compilation of material properties and to summarize possible uses and advantages in device applications. We discuss Ga 2 O 3 , Al 2 O 3 , In 2 O 3 , SnO 2 , ZnO, CdO, NiO, CuO, and Sc 2 O 3 . We outline the crystal structure of the oxides, and we present lattice parameters of the stable phases and a discussion of the metastable polymorphs. We highlight electrical properties such as bandgap energy, carrier mobility, effective carrier masses, dielectric constants, and electrical breakdown field. Based on literature availability, we review the temperature dependence of properties such as bandgap energy and carrier mobility among the oxides. Infrared and Raman modes are presented and discussed for each oxide providing insight into the phonon properties. The phonon properties also provide an explanation as to why some of the oxide parameters experience limitations due to phonon scattering such as carrier mobility. Thermal properties of interest include the coefficient of thermal expansion, Debye temperature, thermal diffusivity, specific heat, and thermal conductivity. Anisotropy is evident in the non-cubic oxides, and its impact on bandgap energy, carrier mobility, thermal conductivity, coefficient of thermal expansion, phonon modes, and carrier effective mass is discussed. Alloys, such as AlGaO, InGaO, (Al x In y Ga 1− x− y ) 2 O 3 , ZnGa 2 O 4 , ITO, and ScGaO, were included where relevant as they have the potential to allow for the improvement and alteration of certain properties. This Review provides a fundamental material perspective on the application space of semiconducting oxide-based devices in a variety of electronic and optoelectronic applications. 
    more » « less
  2. Abstract Low dimensional (LD) organic metal halide hybrids (OMHHs) have recently emerged as new generation functional materials with exceptional structural and property tunability. Despite the remarkable advances in the development of LD OMHHs, optical properties have been the major functionality extensively investigated for most of LD OMHHs developed to date, while other properties, such as magnetic and electronic properties, remain significantly under‐explored. Here, we report for the first time the characterization of the magnetic and electronic properties of a 1D OMHH, organic‐copper (II) chloride hybrid (C8H22N2)Cu2Cl6. Owing to the antiferromagnetic coupling between Cu atoms through chloride bridges in 1D [Cu2Cl62−]chains, (C8H22N2)Cu2Cl6is found to exhibit antiferromagnetic ordering with a Néel temperature of 24 K. The two‐terminal (2T) electrical measurement on a (C8H22N2)Cu2Cl6single crystal reveals its insulating nature. This work shows the potential of LD OMHHs as a highly tunable quantum material platform for spintronics. 
    more » « less
  3. The MAB phases are atomically layered, ternary or quaternary transition metal (M) borides (TMBs), with the general formula (MB)2 zAx(MB2)y( z = 1–2; x = 1–2; y = 0–2), whose structures are composed of a transition M-B sublattices interleaved by A-atom (A = Al,Zn) mono- or bilayers. Most of the MAB phases were discovered before the 1990s, but recent discoveries of intriguing magnetocaloric properties, mechanical deformation behaviour, catalytic properties, and high-temperature oxidation resistance has led to their ‘re-discovery’. Herein, MAB phase synthesis is reviewed and their magnetic, electronic, thermal, and mechanical properties are summarized. Because the M-B layers in the MAB phases structurally resemble their corresponding binaries of the same M:B stoichiometry, the effects of the A-layers on properties are discussed. Inconsistencies in the literature are critically assessed to gain insights on the processing-structure-property relations, suggest fruitful avenues for future research, and identify limitations for prospective applications. 
    more » « less
  4. Herein, the effect of structure on pseudocapacitive properties in alkaline conditions is demonstrated through the investigation of isoelectronic oxides Ca2LaMn2O7and Sr2LaMn2O7, where the difference in ionic radii of Ca2+and Sr2+leads to a change in structure and lattice symmetry, resulting in an orthorhombicCmcmstructure for the former and a tetragonalI4/mmmstructure for the latter. While calcium and strontium do not make a direct contribution to the near‐surface faradaic processes that are essential to the pseudocapacitive properties, their effect on the structure leads to a change in the oxygen intercalation process and the associated pseudocapacitive energy storage. It is shown that Sr2LaMn2O7has a significantly greater specific capacitance than Ca2LaMn2O7. In addition, the former shows a considerably higher‐energy density compared to the latter. Furthermore, these materials show highly stable energy‐storage properties, and retain their specific capacitance over 10 000 cycles of charge–discharge in a symmetric pseudocapacitive cell. Importantly, these findings show the structure–property relationships, where a change in the structure and lattice symmetry can result in a significant change in pseudocapacitive charge–discharge properties in isoelectronic systems. 
    more » « less
  5. Abstract In recent years,Tdtransition metal dichalcogenides have been heavily explored for their type‐II Weyl topology, gate‐tunable superconductivity, and nontrivial edge states in the monolayer limit. Here, the Fermi surface characteristics and fundamental transport properties of similarly structured 2M‐WSe2bulk single crystals are investigated. The measurements of the angular dependent Shubnikov–de Haas oscillations, with support from first‐principles calculations, reveal multiple three‐ and two‐dimensional Fermi pockets, one of which exhibits a nontrivial Berry's phase. In addition, it is shown that the electronic properties of 2M‐WSe2are similar to those of orthorhombic MoTe2and WTe2, having a single dominant carrier type at high temperatures that evolves into coexisting electron and hole pockets with near compensation at temperatures below 100 K, suggesting the existence of a Lifshitz transition. Altogether, the observations provide evidence towards the topologically nontrivial electronic properties of 2M‐WSe2and motivate further investigation on the topological properties of 2Mtransition metal dichalcogenides in the atomically thin limit. 
    more » « less