skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Causal inference methods for vaccine sieve analysis with effect modification
The protective effects of vaccines may vary depending on individual characteristics, such as age. Traditionally, such effect modification has been examined with subgroup analyses or inclusion of cross‐product terms in regression frameworks. However, in many vaccine settings, effect modification may also depend on the infecting pathogen's characteristics, which are measured postrandomization. Sieve analysis examines whether such effects are present by combining pathogen genetic sequence information with individual‐level data and can generate new hypotheses on the pathways whereby vaccines provide protection. In this article, we develop a causal framework for evaluating effect modification in the context of sieve analysis. Our approach can be used to assess the magnitude of sieve effects and, in particular, whether these effects are modified by individual‐level characteristics. Our method accounts for difficulties occurring in real‐world data analysis, such as competing risks, nonrandomized treatments, and differential dropout. Our approach also integrates modern machine learning techniques. We demonstrate the validity and efficiency of our approach in simulation studies and apply the methodology to a malaria vaccine study.  more » « less
Award ID(s):
2015540
PAR ID:
10455954
Author(s) / Creator(s):
; ;
Date Published:
Journal Name:
Statistics in Medicine
Volume:
41
Issue:
8
ISSN:
0277-6715
Page Range / eLocation ID:
1513 to 1524
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Wallqvist, Anders (Ed.)
    The SARS-CoV-2 pandemic has generated a considerable number of infections and associated morbidity and mortality across the world. Recovery from these infections, combined with the onset of large-scale vaccination, have led to rapidly-changing population-level immunological landscapes. In turn, these complexities have highlighted a number of important unknowns related to the breadth and strength of immunity following recovery or vaccination. Using simple mathematical models, we investigate the medium-term impacts of waning immunity against severe disease on immuno-epidemiological dynamics. We find that uncertainties in the duration of severity-blocking immunity (imparted by either infection or vaccination) can lead to a large range of medium-term population-level outcomes (i.e. infection characteristics and immune landscapes). Furthermore, we show that epidemiological dynamics are sensitive to the strength and duration of underlying host immune responses; this implies that determining infection levels from hospitalizations requires accurate estimates of these immune parameters. More durable vaccines both reduce these uncertainties and alleviate the burden of SARS-CoV-2 in pessimistic outcomes. However, heterogeneity in vaccine uptake drastically changes immune landscapes toward larger fractions of individuals with waned severity-blocking immunity. In particular, if hesitancy is substantial, more robust vaccines have almost no effects on population-level immuno-epidemiology, even if vaccination rates are compensatorily high among vaccine-adopters. This pessimistic scenario for vaccination heterogeneity arises because those few individuals that are vaccine-adopters are so readily re-vaccinated that the duration of vaccinal immunity has no appreciable consequences on their immune status. Furthermore, we find that this effect is heightened if vaccine-hesitants have increased transmissibility (e.g. due to riskier behavior). Overall, our results illustrate the necessity to characterize both transmission-blocking and severity-blocking immune time scales. Our findings also underline the importance of developing robust next-generation vaccines with equitable mass vaccine deployment. 
    more » « less
  2. Abstract On April 13, 2021, the CDC announced that the administration of Johnson and Johnson’s COVID-19 vaccine would be paused due to a rare blood clotting side effect in ~ 0.0001% of people given the vaccine. Most people who are hesitant to get a COVID-19 vaccine list potential side effects as their main concern (PEW, 2021); thus, it is likely that this announcement increased vaccine hesitancy among the American public. Two days after the CDC’s announcement, we administered a survey to a group of 2,046 Americans to assess their changes in attitudes toward COVID-19 vaccines. The aim of this study was to investigate whether viewing icon arrays of side effect risk would prevent increases in COVID-19 vaccine hesitancy due to the announcement. We found that using icon arrays to illustrate the small chance of experiencing the blood clotting side effect significantly prevented increases in aversion toward the Johnson and Johnson vaccine as well as all other COVID-19 vaccines. 
    more » « less
  3. Turner, Richard (Ed.)
    Background With the availability of multiple Coronavirus Disease 2019 (COVID-19) vaccines and the predicted shortages in supply for the near future, it is necessary to allocate vaccines in a manner that minimizes severe outcomes, particularly deaths. To date, vaccination strategies in the United States have focused on individual characteristics such as age and occupation. Here, we assess the utility of population-level health and socioeconomic indicators as additional criteria for geographical allocation of vaccines. Methods and findings County-level estimates of 14 indicators associated with COVID-19 mortality were extracted from public data sources. Effect estimates of the individual indicators were calculated with univariate models. Presence of spatial autocorrelation was established using Moran’s I statistic. Spatial simultaneous autoregressive (SAR) models that account for spatial autocorrelation in response and predictors were used to assess (i) the proportion of variance in county-level COVID-19 mortality that can explained by identified health/socioeconomic indicators (R 2 ); and (ii) effect estimates of each predictor. Adjusting for case rates, the selected indicators individually explain 24%–29% of the variability in mortality. Prevalence of chronic kidney disease and proportion of population residing in nursing homes have the highest R 2 . Mortality is estimated to increase by 43 per thousand residents (95% CI: 37–49; p < 0.001) with a 1% increase in the prevalence of chronic kidney disease and by 39 deaths per thousand (95% CI: 34–44; p < 0.001) with 1% increase in population living in nursing homes. SAR models using multiple health/socioeconomic indicators explain 43% of the variability in COVID-19 mortality in US counties, adjusting for case rates. R 2 was found to be not sensitive to the choice of SAR model form. Study limitations include the use of mortality rates that are not age standardized, a spatial adjacency matrix that does not capture human flows among counties, and insufficient accounting for interaction among predictors. Conclusions Significant spatial autocorrelation exists in COVID-19 mortality in the US, and population health/socioeconomic indicators account for a considerable variability in county-level mortality. In the context of vaccine rollout in the US and globally, national and subnational estimates of burden of disease could inform optimal geographical allocation of vaccines. 
    more » « less
  4. Read, Andrew Fraser (Ed.)
    Two of the Coronavirus Disease 2019 (COVID-19) vaccines currently approved in the United States require 2 doses, administered 3 to 4 weeks apart. Constraints in vaccine supply and distribution capacity, together with a deadly wave of COVID-19 from November 2020 to January 2021 and the emergence of highly contagious Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) variants, sparked a policy debate on whether to vaccinate more individuals with the first dose of available vaccines and delay the second dose or to continue with the recommended 2-dose series as tested in clinical trials. We developed an agent-based model of COVID-19 transmission to compare the impact of these 2 vaccination strategies, while varying the temporal waning of vaccine efficacy following the first dose and the level of preexisting immunity in the population. Our results show that for Moderna vaccines, a delay of at least 9 weeks could maximize vaccination program effectiveness and avert at least an additional 17.3 (95% credible interval [CrI]: 7.8–29.7) infections, 0.69 (95% CrI: 0.52–0.97) hospitalizations, and 0.34 (95% CrI: 0.25–0.44) deaths per 10,000 population compared to the recommended 4-week interval between the 2 doses. Pfizer-BioNTech vaccines also averted an additional 0.60 (95% CrI: 0.37–0.89) hospitalizations and 0.32 (95% CrI: 0.23–0.45) deaths per 10,000 population in a 9-week delayed second dose (DSD) strategy compared to the 3-week recommended schedule between doses. However, there was no clear advantage of delaying the second dose with Pfizer-BioNTech vaccines in reducing infections, unless the efficacy of the first dose did not wane over time. Our findings underscore the importance of quantifying the characteristics and durability of vaccine-induced protection after the first dose in order to determine the optimal time interval between the 2 doses. 
    more » « less
  5. null (Ed.)
    This study examined whether future COVID-19 vaccine acceptance differed based on an experimental manipulation of the vaccine safety and effectiveness profile. Data come from the Detroit Metro Area Community Study, a population-based study conducted July 15–20, 2020. Participants were asked whether they would get a new COVID-19 vaccine after being randomly assigned information about the vaccine’s effectiveness (50% or 95%) and chance of fever (5% or 20%). Among 1,117 Detroiters, 51.3% would accept a COVID-19 vaccine that is 50% effective and 77.1% would accept a vaccine that is 95% effective. Women and adults ≥65 were more accepting of a vaccine; Black Detroiters were less accepting. Believing vaccines to be important, effective, and safe was associated with higher acceptance. Uptake of a COVID-19 may be limited, depending on perceived vaccine effectiveness and general attitudes toward vaccines. Public health approaches to modifying these attitudes will be especially important in the Black community. 
    more » « less