skip to main content


This content will become publicly available on July 10, 2024

Title: Multi‐Step Nucleation of a Crystalline Silicate Framework via a Structurally Precise Prenucleation Cluster
Abstract Hierarchical nucleation pathways are ubiquitous in the synthesis of minerals and materials. In the case of zeolites and metal–organic frameworks, pre‐organized multi‐ion “secondary building units” (SBUs) have been proposed as fundamental building blocks. However, detailing the progress of multi‐step reaction mechanisms from monomeric species to stable crystals and defining the structures of the SBUs remains an unmet challenge. Combining in situ nuclear magnetic resonance, small‐angle X‐ray scattering, and atomic force microscopy, we show that crystallization of the framework silicate, cyclosilicate hydrate, occurs through an assembly of cubic octameric Q 3 8 polyanions formed through cross‐linking and polymerization of smaller silicate monomers and other oligomers. These Q 3 8 are stabilized by hydrogen bonds with surrounding H 2 O and tetramethylammonium ions (TMA + ). When Q 3 8 levels reach a threshold of ≈32 % of the total silicate species, nucleation occurs. Further growth proceeds through the incorporation of [(TMA) x (Q 3 8 )⋅ n  H 2 O] ( x −8) clathrate complexes into step edges on the crystals.  more » « less
Award ID(s):
1719797
NSF-PAR ID:
10456009
Author(s) / Creator(s):
; ; ; ; ; ; ; ; ;
Date Published:
Journal Name:
Angewandte Chemie International Edition
Volume:
62
Issue:
28
ISSN:
1433-7851
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Hierarchical nucleation pathways are ubiquitous in the synthesis of minerals and materials. In the case of zeolites and metal–organic frameworks, pre-organized multi-ion “secondary building units” (SBUs) have been proposed as fundamental building blocks. However, detailing the progress of multi-step reaction mechanisms from monomeric species to stable crystals and defining the structures of the SBUs remains an unmet challenge. Combining in situ nuclear magnetic resonance, small-angle X-ray scattering, and atomic force microscopy, we show that crystallization of the framework silicate, cyclosilicate hydrate, occurs through an assembly of cubic octameric Q38 polyanions formed through cross-linking and polymerization of smaller silicate monomers and other oligomers. These Q38 are stabilized by hydrogen bonds with surrounding H2O and tetramethylammonium ions (TMA+). When Q38 levels reach a threshold of ≈32 % of the total silicate species, nucleation occurs. Further growth proceeds through the incorporation of [(TMA)x(Q38)⋅n H2O](x−8) clathrate complexes into step edges on the crystals. 
    more » « less
  2. Abstract

    Infrared (IR) and Raman spectroscopic features of silicate glasses are often interpreted based on the analogy with those of smaller molecules, molecular clusters, or crystalline counterparts; this study tests the accuracy and validity of these widely cited peak assignment schemes by comparing vibrational spectral features with bond parameters of the glass network created by molecular dynamics (MD) simulations. A series of sodium silicate glasses with compositions of [Na2O]x[Al2O3]2[SiO2]98−xwithx = 7, 12, 17, and 22 were synthesized and analyzed with IR and Raman. A silica glass substrate and a crystalline quartz were also analyzed for comparison. Glass structures with the same compositions were generated with MD simulations using three types of potentials: fixed partial charge pairwise (Teter), partial diffuse charge potential (MGFF), and bond order‐based charge transfer potential (ReaxFF). The comparison of simulated and experimental IR spectra showed that, among these three potentials tested, ReaxFF reproduces the concentration dependence of spectral features closest to the experimentally observed trend. Thus, the bond length and angle distributions as well as Si–Qnspecies and ring size distributions of silica and sodium silicate glasses were obtained from ReaxFF‐MD simulations and further compared with the peak assignment or deconvolution schemes—which have been widely used since 1970s and 1980s—(a) correlation between the IR peak position in the Si–O stretch region (1050‐1120 cm−1) and the Si–O–Si bond angle; (b) deconvolution of the Raman bands in the Si–O stretch region with theQnspeciation; and (c) assignment of the Raman bands in the 420‐600 cm−1region to the bending modes of (SiO)nrings with different sizes (typically, n = 3‐6). The comparisons showed that none of these widely used methods is congruent with the bond parameters or structures of silicate glass networks produced via ReaxFF‐MD simulations. This finding invokes that the adequacy of these spectral interpretation methods must be questioned. Alternative interpretations are proposed, which are to be tested independently in future studies.

     
    more » « less
  3. Ol Doinyo Lengai (ODL, Tanzania, East African Rift) is the only known volcano currently erupting carbonatite on Earth with 30 yr. cycles alternating between quiescent carbonatite effusion and explosive, compositionally-zoned silicate eruptions. We performed isothermal crystallization and thermal gradient experiments involving ODL nephelinite, Na 2 CO 3 and H 2 O to understand magmatic differentiation in this system using SEM-EDS x-ray analysis, x-ray tomography, SIMS and LA-ICPMS to characterize samples. Isothermal crystallization experiments document that hydrous liquids coexist with nepheline+feldspar; as peralkalinity increases, temperatures decrease. Presence of Na 2 CO 3 increases the solubility of water in the liquid. Experiments placing nephelinite with H 2 O+ Na 2 CO 3 in a 1,000–350°C thermal gradient show that rapid reaction occurs, resulting in virtually melt-free mineral aggregates having mineral layering reflecting systematic differentiation throughout the capsule. Both types of experiments argue that a continuous interconnected melt exists over a large temperature range in alkalic magmatic systems allowing for differentiation in a reactive mush zone process. Liquid compositions change from carbonate-water bearing nephelinites at high temperature down to hydrous carbonate silicate liquids at <400°C. We propose a model for ODL eruption behavior: 1) nephelinite magmas pond and build a sill complex downward with time; 2) hydrous carbonate melts form in the mush and buoyantly rise, ultimately erupting as natrocarbonatites observed; 3) H 2 O contents build up in melt at the bottom of the sill complex, eventually leading to water vapor saturation and explosive silicate eruptions. The model accounts for eruption cycling and the unusual compositional zoning of ODL silicate tephras. 
    more » « less
  4. While new particle formation events have been observed worldwide, our fundamental understanding of the precursors remains uncertain. It has been previously shown that small alkylamines and ammonia (NH 3 ) are key actors in sub-3 nm particle formation through reactions with acids such as sulfuric acid (H 2 SO 4 ) and methanesulfonic acid (CH 3 S(O)(O)OH, MSA), and that water also plays a role. Because NH 3 and amines co-exist in air, we carried out combined experimental and theoretical studies examining the influence of the addition of NH 3 on particle formation from the reactions of MSA with methylamine (MA) and trimethylamine (TMA). Experiments were performed in a 1 m flow reactor at 1 atm and 296 K. Measurements using an ultrafine condensation particle counter (CPC) and a scanning mobility particle sizer (SMPS) show that new particle formation was systematically enhanced upon simultaneous addition of NH 3 to the MSA + amine binary system, with the magnitude depending on the amine investigated. For the MSA + TMA reaction system, the addition of NH 3 at ppb concentrations produced a much greater effect ( i.e. order of magnitude more particles) than the addition of ∼12 000 ppm water (corresponding to ∼45–50% relative humidity). The effect of NH 3 on the MSA + MA system, which is already very efficient in forming particles on its own, was present but modest. Calculations of energies, partial charges and structures of small cluster models of the multi-component particles likewise suggest synergistic effects due to NH 3 in the presence of MSA and amine. The local minimum structures and the interactions involved suggest mechanisms for this effect. 
    more » « less
  5. F or c e d at a f or a fl a p pi n g f oil e n er g y h ar v e st er wit h a cti v e l e a di n g e d g e m oti o n o p er ati n g i n t h e l o w r e d u c e d fr e q u e n c y r a n g e i s c oll e ct e d t o d et er mi n e h o w l e a di n g e d g e m oti o n aff e ct s e n er g y h ar v e sti n g p erf or m a n c e. T h e f oil pi v ot s a b o ut t h e mi dc h or d a n d o p er at e s i n t h e l o w r e d u c e d fr e q u e n c y r a n g e of 𝑓𝑓 𝑓𝑓 / 𝑈𝑈 ∞ = 0. 0 6 , 0. 0 8, a n d 0. 1 0 wit h 𝑅𝑅 𝑅𝑅 = 2 0 ,0 0 0 − 3 0 ,0 0 0 , wit h a pit c hi n g a m plit u d e of 𝜃𝜃 0 = 7 0 ∘ , a n d a h e a vi n g a m plit u d e of ℎ 0 = 0. 5 𝑓𝑓 . It i s f o u n d t h at l e a di n g e d g e m oti o n s t h at r e d u c e t h e eff e cti v e a n gl e of att a c k e arl y t h e str o k e w or k t o b ot h i n cr e a s e t h e lift f or c e s a s w ell a s s hift t h e p e a k lift f or c e l at er i n t h e fl a p pi n g str o k e. L e a di n g e d g e m oti o n s i n w hi c h t h e eff e cti v e a n gl e of att a c k i s i n cr e a s e d e arl y i n t h e str o k e s h o w d e cr e a s e d p erf or m a n c e. I n a d diti o n a di s cr et e v ort e x m o d el wit h v ort e x s h e d di n g at t h e l e a di n g e d g e i s i m pl e m e nt f or t h e m oti o n s st u di e d; it i s f o u n d t h at t h e m e c h a ni s m f or s h e d di n g at t h e l e a di n g e d g e i s n ot a d e q u at e f or t hi s p ar a m et er r a n g e a n d t h e m o d el c o n si st e ntl y o v er pr e di ct s t h e a er o d y n a mi c f or c e s. 
    more » « less