Bone histology grants substantial insight into the growth and biology of fossil vertebrates. Many of the major non‐avian dinosaurian clades have been extensively sampled for bone histologic data allowing reconstruction of their growth as well as the assessment of the evolution of growth changes along phylogenies. However, horned ceratopsians are poorly represented in paleohistologic studies. Further, the ceratopsian taxa that have been examined are unevenly sampled phylogenetically with very basal forms and highly derived forms making up the majority of studied taxa. In order to rectify this, we have histologically sampled
The fossil record provides compelling examples of heterochrony at macroevolutionary scales such as the peramorphic giant antlers of the Irish elk. Heterochrony has also been invoked in the evolution of the distinctive cranial frill of ceratopsian dinosaurs such as
- Award ID(s):
- 1925884
- NSF-PAR ID:
- 10456181
- Publisher / Repository:
- Wiley Blackwell (John Wiley & Sons)
- Date Published:
- Journal Name:
- Ecology and Evolution
- Volume:
- 10
- Issue:
- 13
- ISSN:
- 2045-7758
- Page Range / eLocation ID:
- p. 6288-6309
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
ABSTRACT Avaceratops from Montana andYehuecauhceratops from northern Mexico to assess how mid‐sized basal centrosaurines grew relative to more basal and derived forms. Based on results from these taxa, basal centrosaurines present a mosaic of growth characters intermediate between those seen in basal ceratopsians and more derived centrosaurines. Further,Yehuecauhceratops has many lines of arrested growth preserved, suggesting that the large number of lines of arrested growth found in a high‐latitudePachyrhinosaurus specimen may be a result of phylogeny rather than geography. Since lines of arrested growth are not preserved in long bones of many ceratopsians, especially chasmosaurines, we also histologically sampled ribs ofAvaceratops andPachyrhinosaurus . However, the largest ribs were highly remodeled obscuring lines of arrested growth, making it unlikely that rib histology will clarify growth trends in ceratopsians. These centrosaurines add to the growing ceratopsian histological database and demonstrate that basal centrosaurines grew in a manner intermediate between non‐ceratopsid taxa and derived centrosaurines. Anat Rec, 303:935–948, 2020. © 2019 Wiley Periodicals, Inc. -
null (Ed.)Synopsis Pygopodids are elongate, functionally limbless geckos found throughout Australia. The clade presents low taxonomic diversity (∼45 spp.), but a variety of cranial morphologies, habitat use, and locomotor abilities that vary between and within genera. In order to assess potential relationships between cranial morphology and ecology, computed tomography scans of 29 species were used for 3D geometric morphometric analysis. A combination of 24 static landmarks and 20 sliding semi-landmarks were subjected to Generalized Procrustes Alignment. Disparity in cranial shape was visualized through Principal Component Analysis, and a multivariate analysis of variance (MANOVA) was used to test for an association between shape, habitat, and diet. A subset of 27 species with well-resolved phylogenetic relationships was used to generate a phylomorphospace and conduct phylogeny-corrected MANOVA. Similar analyses were done solely on Aprasia taxa to explore species-level variation. Most of the variation across pygopodids was described by principal component (PC) 1(54%: cranial roof width, parabasisphenoid, and occipital length), PC2 (12%: snout elongation and braincase width), and PC3 (6%: elongation and shape of the palate and rostrum). Without phylogenetic correction, both habitat and diet were significant influencers of variation in cranial morphology. However, in the phylogeny-corrected MANOVA, habitat remained weakly significant, but not diet, which can be explained by generic-level differences in ecology rather than among species. Our results demonstrate that at higher levels, phylogeny has a strong effect on morphology, but that influence may be due to small sample size when comparing genera. However, because some closely related taxa occupy distant regions of morphospace, diverging diets, and use of fossorial habitats may contribute to variation seen in these geckos.more » « less
-
Horseshoe crabs (class Xiphosura) are a long-lived clade of aquatic chelicerate arthropods with a fossil record spanning approximately 480 million years. Though Xiphosura are often noted for their morphological stability, further investigation of evolutionary rate and paleoecological trends have revealed a remarkably dynamic clade, with both temporal and phylogenetic variability in evolutionary trends. Additionally, heterochrony has been revealed to be a strong driver behind xiphosuran evolution and the exploration of non-marine niches. Using combined geometric morphometric and evolutionary rate techniques, we further highlight the incongruency of the fossil record of xiphosurans with their designation as a “living fossil” or stabilomorph clade. Here, we compare the results of a geometric morphometric analysis with a discrete character evolutionary rate calculation performed using the R package Claddis. Both analyses incorporated 55 xiphosuran species, ranging temporally from the Ordovician Lunataspis aurora to all four modern species. Morphometric data was collected as 2Dlandmarks and semi-landmarks, with variable numbers of points due to varying levels of preservation amongst fossil specimens. These data were then used to produce a PCA for the visualization of morphospace. Both studies support a dynamic evolutionary history for Xiphosura. The discrete character analysis revealed peaks in discrete character evolution in the heterochronic non-marine clades, as well as an overall declining trend in evolutionary rate. Similarly, the clades with higher evolutionary rates occupy a wider portion of morphospace compared with the more morphologically stable clades.more » « less
-
Abstract The bony cranial structures of even‐toed hoofed mammals are important for understanding ecology and behavior of ruminants. Horns, the cranial appendages of the family Bovidae, are covered in a layer of keratin that is often not preserved in the fossil record; however, this keratin sheath is intimately involved in the processes that influence horn shape evolution. To understand the relationship between these two components of horns, we quantified both core and sheath shape for four extant species using three‐dimensional geometric morphometric analyses in separate, core‐ and sheath‐specific morphospaces as well as a combined morphospace. We assessed correlations between the horn and sheath morphospaces using two‐block partial least squares regression, a Mantel test of pairwise distances between species, and Procrustes ANOVA. We measured disparity in the combined morphospace as Procrustes distances between mean shapes of cores and sheaths within and between species and as Procrustes variance. We also tested whether core and sheath shapes could be discriminated by taxon with a canonical variate analysis. Results show that horn core and sheath morphospaces are strongly correlated. The differences in shape between a species' core and sheath were statistically significant, but not as great as those between the cores and sheaths of different species when close relatives were not considered, and core and sheath Procrustes variances are not significantly different within species. Cores and sheath shapes were highly identifiable and were assigned to the correct clade 93% of the time in the canonical variate analysis. Based on these tests, horn cores are distinguishable in geometric morphometric analyses, extending the possibility of using geometric morphometrics to study the ecology and evolution of bovid horns to the fossil record.
-
Previous work has shown increased morphological variance within the forelimbs of the Permian synapsid group known as Therapsida over that of their Carboniferous and early Permian forerunners (“pelycosaurs”). Considering that disparity trends have been known to point to underlying macroevolutionary transitions, here we analyzed morphological variance alongside several additional macroevolutionary metrics to better isolate possible evolutionary mechanisms. Shape data was collected on a sample of 119 humeri and 99 ulnae comprising three major synapsid radiations with a temporal range from the Carboniferous into the Triassic. Taxonomic sample included all major groups of pelycosaur-grade synapsids, all five recognized non-cynodontian therapsid clades, and a sample of pre-prozostrodontian cynodonts. Procrustes variance - a multivariate quantification of morphospace occupation - was the chosen disparity metric for the study. Rate of phenotypic change, which considers the amount of shape change that would be necessary to achieve observed morphologies given the shape of the closely related taxa, was analyzed as the metric for evolutionary rate. Both metrics were considered through-time upon genera present in sequential 5 million year time bins. Our results expand upon previous findings that disparity increases throughout the earliest stages of the Permian, coincident with the diversification of pelycosaurs and the emergence of Therapsida. This expanded dataset further shows that disparity approaches an asymptote around 270 million years ago and only increases marginally through the late Permian, remaining between 0.018–0.021 from 275-245 mya. In contrast, evolutionary rate does not appear to asymptote during this same interval, starting at a low of 6.17e-6 (300 mya) and increasing to a peak of 1.78e-5 right before the End Permian Mass Extinction Event (252 mya). The continuing increase of evolutionary rate shows that morphological change continues across taxa, but the plateauing of morphological disparity suggests that morphospace is not expanding concurrent with this. The incongruence between these two metrics suggests a critical change in evolutionary mode, wherein morphological change continues rapidly but does not result in the evolution of novel morphologies. These results provide some of the strongest quantitative data yet of an evolutionary constraint acting upon the morphology of the synapsid forelimb through deep time.more » « less