skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.

Attention:

The NSF Public Access Repository (PAR) system and access will be unavailable from 11:00 PM ET on Friday, May 2 until 12:00 AM ET on Saturday, May 3 due to maintenance. We apologize for the inconvenience.


Search for: All records

Award ID contains: 1925884

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract Thescelosaurines are a group of early diverging, ornithischian dinosaurs notable for their conservative bauplans and mosaic of primitive features. Although abundant within the latest Cretaceous ecosystems of North America, their record is poor to absent in earlier assemblages, leaving a large gap in our understanding of their evolution, origins, and ecological roles. Here we report a new small bodied thescelosaurine—Fona herzogaegen. et sp. nov.—from the Mussentuchit Member of the Cedar Mountain Formation, Utah, USA.Fona herzogaeis represented by multiple individuals, representing one of the most comprehensive skeletal assemblages of a small bodied, early diverging ornithischian described from North America to date. Phylogenetic analysis recoversFonaas the earliest member of Thescelosaurinae, minimally containingOryctodromeus, and all three species ofThescelosaurus, revealing the clade was well‐established in North America by as early as the Cenomanian, and distinct from, yet continental cohabitants with, their sister clade, Orodrominae. To date, orodromines and thescelosaurines have not been found together within a single North American ecosystem, suggesting different habitat preferences or competitive exclusion. Osteological observations reveal extensive intraspecific variation across cranial and postcranial elements, and a number of anatomical similarities withOryctodromeus, suggesting a shared semi‐fossorial lifestyle. 
    more » « less
  2. ABSTRACT Current investigations into the Albian–Cenomanian sedimentary record within the Western Interior have identified multiple complex tectono‐sedimentary process–response systems during the ongoing evolution of North America. One key sedimentary succession, the upper Cedar Mountain Formation (Short Canyon Member and Mussentuchit Member), has historically been linked to various regionally and continentally significant tectonic events, including Sevier fold‐and‐thrust deformation. However, the linkage between the Short Canyon Member and active Sevier tectonism has been unclear due to a lack of high‐precision age constraints. To establish temporal context, this study compares maximum depositional ages from detrital zircons recovered from the Short Canyon Member with that of a modified Bayesian age stratigraphic model (top‐down) to infer that the Short Canyon Member was deposited atca100 Ma, penecontemporaneous with rejuvenated thrusting across Utah [Pavant (Pahvant), Iron Springs and Nebo thrusts]. These also indicate a short depositional hiatus with the lowermost portion of the overlying Mussentuchit Member. The Short Canyon Member and Mussentuchit Member preserve markedly different sedimentary successions, with the Short Canyon Member interpreted to be composed of para‐autochthonous orogen–transverse (across the Sevier highlands) clastics deposited within a series of stacked distributive fluvial fans. Meanwhile, the muddy paralic Mussentuchit Member was a mix of orogen–transverse (Sevier highlands and Cordilleran Arc) and orogen–parallel basinal sediments and suspension settling fines within the developing collisional foredeep. However, the informally named last chance sandstone (middle sandstone of the Mussentuchit Member) is identified as an orogen–transverse sandy debris flow originating from the Sevier highlands, similar to the underlying Short Canyon Member. During this phase of landscape evolution, the Short Canyon Member – Mussentuchit Member depocentre was a sedimentary conduit system that would fertilize the Western Interior Seaway with ash‐rich sediments. These volcaniclastic contributions, along with penecontemporaneous deposits across the western coastal margin of the Western Interior Seaway, eventually would have lowered oxygen content and resulted in a contributing antecedent trigger for the Cenomanian–Turonian transition Oceanic Anoxic Event 2. 
    more » « less
    Free, publicly-accessible full text available July 1, 2025
  3. Abstract The fossil record provides compelling examples of heterochrony at macroevolutionary scales such as the peramorphic giant antlers of the Irish elk. Heterochrony has also been invoked in the evolution of the distinctive cranial frill of ceratopsian dinosaurs such asTriceratops. Although ceratopsian frills vary in size, shape, and ornamentation, quantitative analyses that would allow for testing hypotheses of heterochrony are lacking. Here, we use geometric morphometrics to examine frill shape variation across ceratopsian diversity and within four species preserving growth series. We then test whether the frill constitutes an evolvable module both across and within species, and compare growth trajectories of taxa with ontogenetic growth series to identify heterochronic processes. Evolution of the ceratopsian frill consisted primarily of progressive expansion of its caudal and caudolateral margins, with morphospace occupation following taxonomic groups. Although taphonomic distortion represents a complicating factor, our data support modularity both across and within species. Peramorphosis played an important role in frill evolution, with acceleration operating early in neoceratopsian evolution followed by progenesis in later diverging cornosaurian ceratopsians. Peramorphic evolution of the ceratopsian frill may have been facilitated by the decoupling of this structure from the jaw musculature, an inference that predicts an expansion of morphospace occupation and higher evolutionary rates among ceratopsids as indeed borne out by our data. However, denser sampling of the meager record of early‐diverging taxa is required to test this further. 
    more » « less
  4. Free, publicly-accessible full text available October 18, 2025
  5. Free, publicly-accessible full text available June 17, 2025
  6. Taphonomic processes create bias in the fossil record, and understanding these processes is integral to interpreting the record of extinct life worldwide. Bones preserved in fluvial environments make up a substantial part of the vertebrate fossil record. These bones have often been transported varying distances from the location of death before becoming buried. Experiments in flumes and natural settings have explored the fluvial taphonomy of mammal skeletons, but the taphonomy of other terrestrial vertebrates, especially extinct clades, has only been sparingly studied directly. Hadrosauroids are a dinosaur clade known from extensive remain throughout the Cretaceous and across the globe, making them an ideal group for taphonomic study. Previous examinations regarding the fluvial taphonomy of their skeletons have often applied bone transport groups derived from classic studies on mammals. Some researchers have raised concerns that the morphologies of non-mammalian bones would not exhibit the same hydraulic properties as mammals, producing different transport patterns. Here, we investigate hadrosauroid bone transport under various flow conditions through actualistic flume experiments using 3d printed models with comparable densities to real bone. We aimed to characterize the timing of transport of different elements (Voorhies Groups), orientation of bones relative to flow direction, and bone surface abrasion patterns. Some elements behave similarly to those described in mammals. As would be expected from previous work, relatively heavy bones such as the femur tend to move last, acting as lag elements. Lighter elements such as the scapula and radius tended to begin moving at much lower flow speeds. Because dinosaur pelvic bones are not fused as in mammals, we observed that the isolated pubis is often among the first elements to commence movement, often rotating or sliding along the bed. Cylindrical limb bones tend to roll or slide along the bed, orienting to be parallel to flow faster or slower depending on element size and flow velocity. Bones with more complex shapes, such as the curved and concave blade of the scapula, moved in less straightforward and unique ways, even vaulting over other bones. We also found that burial by fine silt and mud could be achieved relatively quickly even at slower flow speeds, and burial by sand played an important part in inhibiting transport in higher flow regimes. 
    more » « less
  7. Understanding the effects of climatic upheavals during the Early to Late Cretaceous transition is essential for characterizing the tempo of tectonically driven landscape modification and biological interchange; yet, current chronostratigraphic frameworks are too imprecise, even on regional scales, to address many outstanding questions. This includes the Mussentuchit Member of the uppermost Cedar Mountain Formation, central Utah (southwestern United States), which could provide crucial insights into these impacts within the Western Interior Basin of North America yet remains imprecisely constrained. Here, we present high-precision U-Pb zircon dates from four primary ash beds distributed across ~50 km in central Utah that better constrain the timing of deposition of the Mussentuchit Member and the age of entombed fossils. Ages for ash beds are interpreted through a combination of Bayesian depositional age estimation and stratigraphic age modeling, resulting in posterior ages from 99.490 + 0.057/–0.050 to 98.905 + 0.158/–0.183 Ma. The age model predicts probabilistic ages for fossil localities between the ashes, including new ages for Moros intrepidus, Siats meekerorum, and several undescribed ornithischian dinosaur species of key interest for understanding the timing of faunal turnover in western North America. This new geochronology for the Mussentuchit Member offers unprecedented temporal insights into a volatile interval in Earth’s history. 
    more » « less