This work presents a low‐cost, large‐scale nanofabrication approach that combines imprint lithography and silver doping (IL‐SD) to pattern chalcogenide glass (ChG) films for realizing IR devices. The IL‐SD method involves controled photodoping of silver (Ag) atoms into ChG films and selective removing of undoped ChG. For photodoping of Ag, an Ag‐coated elastomer stamp is brought in contact with the ChG film and exposed to ultraviolet light, and subsequently, the Ag atoms are photo‐dissolved into the ChG film following the nanopatterns on the elastomer stamp. Due to the high wet‐etching selectivity of the undoped ChG to Ag‐doped one, the ChG film can be precisely patterned with a spatial resolution on the order of a few tens of nanometers. Also, by controling the lateral diffusion of Ag atoms during ultraviolet exposure, it is possible to adjust the size of the final patterns formed in the ChG film. As an application demonstration of the IL‐SD process, the As2S3‐based near‐infrared photonic crystals (PhCs) in the wavelength range and flexible midinfrared PhCs are formed, and their optical resonances are investigated. The IL‐SD process enables the low‐cost fabrication of ChG nanostructures on different substrate materials and gives a great promise to realize various IR devices.
more » « less- Award ID(s):
- 1711839
- NSF-PAR ID:
- 10456275
- Publisher / Repository:
- Wiley Blackwell (John Wiley & Sons)
- Date Published:
- Journal Name:
- Small
- Volume:
- 16
- Issue:
- 19
- ISSN:
- 1613-6810
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
null (Ed.)Silver nanocubes have found use in an array of applications but their performance has been plagued by the shape instability arising from the oxidation and dissolution of Ag atoms from the edges and corners. Here we demonstrate that the shape of Ag nanocubes can be well preserved by covering their edges and corners with a corrosion-resistant metal such as Ir. In a typical process, we titrate a Na 3 IrCl 6 solution in ethylene glycol (EG) into a suspension of Ag nanocubes in an EG solution in the presence of poly(vinylpyrrolidone) (PVP) held at 110 °C. The Ir atoms derived from the reduction of Na 3 IrCl 6 by EG and Ag are deposited onto the edges and then corners for the generation of Ag–Ir core-frame nanocubes. Remarkably, our results indicate that a small amount of Ir atoms on the edges and corners is adequate to prevent the Ag nanocubes from transforming into nanospheres when heated in a PVP/EG solution up to 110 °C. We further demonstrate that these Ag–Ir nanocubes embrace plasmonic properties comparable to those of the original Ag nanocubes, making them immediately useful in a variety of applications. This strategy for stabilizing the shape of Ag nanocubes should be extendible to Ag nanocrystals with other shapes or nanocrystals comprised of other metals.more » « less
-
Abstract n‐Doping electron‐transport layers (ETLs) increases their conductivity and improves electron injection into organic light‐emitting diodes (OLEDs). Because of the low electron affinity and large bandgaps of ETLs used in green and blue OLEDs, n‐doping has been notoriously more difficult for these materials. In this work, n‐doping of the polymer poly[(9,9‐dioctylfluorene‐2,7‐diyl)‐
alt ‐(benzo[2,1,3]thiadiazol‐4,7‐diyl)] (F8BT) is demonstrated via solution processing, using the air‐stable n‐dopant (pentamethylcyclopentadienyl)(1,3,5‐trimethylbenzene)ruthenium dimer [RuCp*Mes]2. Undoped and doped F8BT films are characterized using ultraviolet and inverse photoelectron spectroscopy. The ionization energy and electron affinity of the undoped F8BT are found to be 5.8 and 2.8 eV, respectively. Upon doping F8BT with [RuCp*Mes]2, the Fermi level shifts to within 0.25 eV of the F8BT lowest unoccupied molecular orbital, which is indicative of n‐doping. Conductivity measurements reveal a four orders of magnitude increase in the conductivity upon doping and irradiation with ultraviolet light. The [RuCp*Mes]2‐doped F8BT films are incorporated as an ETL into phosphorescent green OLEDs, and the luminance is improved by three orders of magnitude when compared to identical devices with an undoped F8BT ETL. -
Abstract Multilayer dielectric elastomer actuators have a wide range of potential applications, but their development and commercial implementation have been hindered by existing manufacturing processes. Existing processes are low‐throughput, limited in area, and/or can only process a narrow range of elastomers. This study presents a novel fabrication paradigm that overcomes these challenges: instead of sequentially patterning electrodes directly onto successive elastomer layers, electrode stamps are patterned onto a carrier film in an independent batch‐spray process and the electrodes are then stamp‐transferred onto each elastomer layer. By modularizing the production and assembly of electrodes, a laboratory‐scale implementation of the process achieves a throughput of 15 layers h−1, a maximum electrode size of 300×300 mm, and tuning‐free compatibility with a wide range of elastomers. The batch‐spraying paradigm also provides the unique capability to evaluate and modify electrodes before they are assembled into a multilayer; a method of mechanically treating the electrodes is employed to increase the breakdown strength of Elastosil P7670 devices from 15.7 to 33.5 V µm−1. The electrodes are conductive up to a strain of more than 200% and add negligible stiffness to the multilayer structure. The capabilities of this process to produce useful devices are demonstrated with a large‐area loudspeaker and an actuator with 60 active layers.
-
A solid‐state thermoelectric device is attractive for diverse technological areas such as cooling, power generation and waste heat recovery with unique advantages of quiet operation, zero hazardous emissions, and long lifetime. With the rapid growth of flexible electronics and miniature sensors, the low‐cost flexible thermoelectric energy harvester is highly desired as a potential power supply. Herein, a flexible thermoelectric copper selenide (Cu2Se) thin film, consisting of earth‐abundant elements, is reported. The thin film is fabricated by a low‐cost and scalable spin coating process using ink solution with a truly soluble precursor. The Cu2Se thin film exhibits a power factor of 0.62 mW/(m K2) at 684 K on rigid Al2O3substrate and 0.46 mW/(m K2) at 664 K on flexible polyimide substrate, which is much higher than the values obtained from other solution processed Cu2Se thin films (<0.1 mW/(m K2)) and among the highest values reported in all flexible thermoelectric films to date (≈0.5 mW/(m K2)). Additionally, the fabricated thin film shows great promise to be integrated with the flexible electronic devices, with negligible performance change after 1000 bending cycles. Together, the study demonstrates a low‐cost and scalable pathway to high‐performance flexible thin film thermoelectric devices from relatively earth‐abundant elements.
-
Abstract Flexible thermoelectric (TE) devices hold great promise for energy harvesting and cooling applications, with increasing significance to serve as perpetual power sources for flexible electronics and wearable devices. Despite unique and superior TE properties widely reported in nanocrystals, transforming these nanocrystals into flexible and functional forms remains a major challenge. Herein, demonstrated is a transformative 3D conformal aerosol jet printing and rapid photonic sintering process to print and sinter solution‐processed Bi2Te2.7Se0.3nanoplate inks onto virtually any flexible substrates. Within seconds of photonic sintering, the electrical conductivity of the printed film is dramatically improved from nonconductive to 2.7 × 104S m−1. The films demonstrate a room temperature power factor of 730 µW m−1K−2, which is among the highest values reported in flexible TE films. Additionally, the film shows negligible performance changes after 500 bending cycles. The highly scalable and low‐cost fabrication process paves the way for large‐scale manufacturing of flexible devices using a variety of high‐performing nanoparticle inks.