skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Resilience to Large, “Catastrophic” Wildfires in North America's Grassland Biome
Abstract Wildfires are ecosystem‐level drivers of structure and function in many vegetated biomes. While numerous studies have emphasized the benefits of fire to ecosystems, large wildfires have also been associated with the loss of ecosystem services and shifts in vegetation abundance. The size and number of wildfires are increasing across a number of regions, and yet the outcomes of large wildfire on vegetation at large‐scales are still largely unknown. We introduce an exhaustive analysis of wildfire‐scale vegetation response to large wildfires across North America's grassland biome. We use 18 years of a newly released vegetation data set combined with 1,390 geospatial wildfire perimeters and drought data to detect large‐scale vegetation response among multiple vegetation functional groups. We found no evidence of persistent declines in vegetation driven by wildfire at the biome level. All vegetation functional groups exhibited relatively rapid recovery to pre wildfire ranges of variation across the Great Plains ecoregions, with the exception being a persistent decrease in the abundance of trees in the Northwestern Great Plains. Drought intensity magnified immediate vegetation response to wildfire. Persistent declines in vegetation cover were observed at the scale of single pixels (30 m), suggesting that these responses were localized and represent extreme cases within larger wildfires. Our findings echo over a century of research demonstrating a biome resilient to wildfire.  more » « less
Award ID(s):
1920938 1735362
PAR ID:
10456322
Author(s) / Creator(s):
 ;  ;  ;  ;  ;  ;  ;  ;  ;  
Publisher / Repository:
DOI PREFIX: 10.1029
Date Published:
Journal Name:
Earth's Future
Volume:
8
Issue:
7
ISSN:
2328-4277
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Wildfire activity has surged in North America’s temperate grassland biome. Like many biomes, this system has undergone drastic land-use change over the last century; however, how various land-use types contribute to wildfire patterns in grassland systems is unclear. We determine if certain land-use types have a greater propensity for large wildfire in the U.S. Great Plains and how this changes given the percentage of land covered by a given land-use type. Almost 90% of the area burned in the Great Plains occurred in woody and grassland land-use types. Although grassland comprised the greatest area burned by large wildfires, woody vegetation burned disproportionately more than any other land-use type in the Great Plains. Wildfires were more likely to occur when woody vegetation composed greater than 20% of the landscape. Wildfires were unlikely to occur in croplands, pasture/hay fields, and developed areas. Although these patterns varied by region, wildfire was most likely to occur in woody vegetation and/or grassland in 13 of 14 ecoregions we assessed. Because woody vegetation is more conducive to extreme wildfire behaviour than other land-use types in the Great Plains, woody encroachment could pose a large risk for increasing wildfire exposure. Regional planning could leverage differential wildfire activity across land-uses to devise targeted approaches that decrease human exposure in a system prone to fire. 
    more » « less
  2. null (Ed.)
    Wildfire activity has surged in North America’s temperate grassland biome. Like many biomes, this system has undergone drastic land-use change over the last century; however, how various land-use types contribute to wildfire patterns in grassland systems is unclear. We determine if certain land-use types have a greater propensity for large wildfire in the U.S. Great Plains and how this changes given the percentage of land covered by a given land-use type. Almost 90% of the area burned in the Great Plains occurred in woody and grassland land-use types. Although grassland comprised the greatest area burned by large wildfires, woody vegetation burned disproportionately more than any other land-use type in the Great Plains. Wildfires were more likely to occur when woody vegetation composed greater than 20% of the landscape. Wildfires were unlikely to occur in croplands, pasture/hay fields, and developed areas. Although these patterns varied by region, wildfire was most likely to occur in woody vegetation and/or grassland in 13 of 14 ecoregions we assessed. Because woody vegetation is more conducive to extreme wildfire behaviour than other land-use types in the Great Plains, woody encroachment could pose a large risk for increasing wildfire exposure. Regional planning could leverage differential wildfire activity across land-uses to devise targeted approaches that decrease human exposure in a system prone to fire. 
    more » « less
  3. Water use efficiency (WUE) is a critical ecosystem function and a key indicator of vegetation responses to drought, yet its temporal trajectories and underlying drivers during drought propagation remain insufficiently understood. Here, we examined the trajectories, interdependencies and drivers of multidimensional WUE metrics and their components (gross primary production (GPP), evapotranspiration, transpiration (T), and canopy conductance (Gc)) using a conceptual drought propagation framework. We found that even though the carbon assimilation efficiency per stomata increases during drought, the canopy‐level WUE (represented by transpiration WUE (TWUE)) declines, indicating that stomatal regulation operates primarily at the leaf level and cannot offset the drought‐induced reduction in WUE at the canopy scale. A stronger dependence on T and TWUE indicates that the water–carbon trade‐off relationship of vegetation more inclines toward water transport than carbon assimilation. Gc fails to prevent the sharp decline in GPP during drought and has limited capacity to suppress T, as reflected by the reduction magnitude and the threshold (the turning point at which a component shifts from a normal to drought‐responsive state). The primary drivers of the water–carbon relationship under drought propagation include vapor pressure deficit and hydraulic traits. Among plant functional types, grasslands show the strongest water–carbon fluxes in response to drought, whereas evergreen broadleaf forests exhibit the weakest response. These findings refine our comprehensive understanding of multidimensional ecosystem functional dynamics under drought propagation and enlighten how the physiological response of vegetation to drought affects the carbon and water cycles. 
    more » « less
  4. Wildfire frequency and intensity has increased across the Southern Great Plains of the United States and other similar landscapes worldwide in part due to climate change. It is important that policymakers, practitioners, and the agricultural community better understand the impact from increased wildfire incidence and severity across different agricultural landscapes. The purpose of this study is to examine the impact of wildfires across an agricultural landscape of the Southern Great Plains. Using primary data collected from semi-structured interviews of farmers and ranchers in the study region, we quantitatively explore farmers’ and ranchers’ perceptions and experiences about wildfires in the Southern Great Plains of the U.S. About 80% of the producers interviewed had directly experienced wildfire on their property, including significant losses to farmer livelihoods, food stocks (crops and livestock), forages, native grasslands, and structures (building and fencing). Many producers perceived wildfire frequency had increased and another megafire event was very likely. To help reduce wildfire risk for producers in the Southern Great Plains more timely education and outreach efforts about wildfire mitigation, organisation of local fire associations, more timely disaster assistance, and innovative insurance solutions would be useful. 
    more » « less
  5. GrantWilliamson (Ed.)
    Increasing wildfire activities across the Great Plains has raised concerns about the effectiveness and safety of prescribed fire as a land management tool. This study analyzes wildfire records from 1992 to 2020 to assess spatiotemporal patterns in wildfire risk and evaluate the role of prescribed fires through the combined analysis of wildfire and prescribed fire data. Results show a threefold increase in both wildfire frequency and area burned, with fire size increasing from east to west and frequency rising from north to south. Wildfire seasons are gradually occurring earlier due to climate change. Negative correlation between prescribed fires in spring and wildfires in summer indicated the effectiveness of prescribed fire in mitigating wildfire risk. Drought severity accounted for 51% of the interannual variability in area burned, while grass curing accounted for 60% of monthly variability of wildfires in grasslands. The ratio of wildfire area burned to total area burned (dominated by prescribed fires) declined from over 20% in early March to below 1% by early April. The results will lay a foundation for the development of a localized fire risk assessment tool that integrates various long-term, mid-term, and short-term risk factors, and support more effective fire management in this region. 
    more » « less