skip to main content


Title: Strain‐Engineered Anisotropic Optical and Electrical Properties in 2D Chiral‐Chain Tellurium
Abstract

Atomically thin materials, leveraging their low‐dimensional geometries and superior mechanical properties, are amenable to exquisite strain manipulation with a broad tunability inaccessible to bulk or thin‐film materials. Such capability offers unexplored possibilities for probing intriguing physics and materials science in the 2D limit as well as enabling unprecedented device applications. Here, the strain‐engineered anisotropic optical and electrical properties in solution‐grown, sub‐millimeter‐size 2D Te are systematically investigated through designing and introducing a controlled buckled geometry in its intriguing chiral‐chain lattice. The observed Raman spectra reveal anisotropic lattice vibrations under the corresponding straining conditions. The feasibility of using buckled 2D Te for ultrastretchable strain sensors with a high gauge factor (≈380) is further explored. 2D Te is an emerging material boasting attractive characteristics for electronics, sensors, quantum devices, and optoelectronics. The results suggest the potential of 2D Te as a promising candidate for designing and implementing flexible and stretchable devices with strain‐engineered functionalities.

 
more » « less
Award ID(s):
1762698
NSF-PAR ID:
10456328
Author(s) / Creator(s):
 ;  ;  ;  ;  ;  ;  ;  
Publisher / Repository:
Wiley Blackwell (John Wiley & Sons)
Date Published:
Journal Name:
Advanced Materials
Volume:
32
Issue:
29
ISSN:
0935-9648
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    The mechanical exfoliation of naturally occurring layered materials has emerged as an easy and effective method for achieving ultrathin van der Waals (vdW) heterostructures with well-defined lattice orientations of the constituent two-dimensional (2D) material layers. Cylindrite is one such naturally occurring vdW heterostructure, where the superlattice is composed of alternating stacks of SnS2-like and PbS-like layers. Although the constituent 2D lattices are isotropic, inhomogeneous strain occurring from local atomic alignment for forcing the commensuration makes the cylindrite superlattice structurally anisotropic. Here, we demonstrate the highly anisotropic optical responses of cylindrite thin flakes induced by the anisotropic crystal structure, including angle-resolved polarized Raman scattering, linear dichroism, and polarization-dependent anisotropic third-harmonic generation. Our results provide a promising approach for identifying various natural vdW heterostructure-based 2D materials with tailored optical properties and can be harnessed for realizing anisotropic optical devices for on-chip photonic circuits and optical information processing.

     
    more » « less
  2. The in-plane orientation-dependent electrical and optical properties of two-dimensional (2D) anisotropic materials attract significant attention because of the intriguing underlying physics. However, this feature limits their further development in polarization-independent applications such as refractive index sensors and light absorbers. In this paper, polarization-independent optical properties of black phosphorous (BP) metadevices are achieved by the design of a single-layer pattern of 2D anisotropic material. Finite-difference time-domain (FDTD) simulation results indicate that the absorption spectrum remains unchanged as the polarization angle of the incident light varies from 0° to 360°. The performance of the BP metadevices when used as refractive index sensors is also studied. The results show that the polarization-independent BP sensors exhibit high sensitivity and figures of merit (FOMs). This work opens up the possibility of fabricating optically polarization-independent devices based on a single-layer pattern of 2D anisotropic material.

     
    more » « less
  3. Abstract

    Ultrathin ternary 2D materials have recently gained significant attention in the context of tailoring physical properties of materials via stoichiometric variation, which are crucial to many applications in optoelectronics, thermoelectrics, and nanophotonics. Herein, sulfide mineral getchellite is identified as a new type of ternary layered material and large‐area getchellite thin flakes are prepared through mechanical exfoliation. The highly anisotropic linear and nonlinear optical responses of getchellite thin flakes facilitated by the reduced in‐plane crystal symmetry are reported, including anisotropic Raman scattering, wavelength‐dependent linear dichroism transition, and anisotropic third‐harmonic generation (THG). Furthermore, the third‐order nonlinear susceptibility for getchellite crystal is retrieved from the thickness‐dependent THG emission. The demonstrated strong anisotropic linear and nonlinear optical properties of van der Waals layered getchellite will have implications for future technological innovations in photodetectors, optical sensors, nonlinear optical signal processors, and other on‐chip photonic device prototypes.

     
    more » « less
  4. Abstract

    Strain engineering is a promising way to tune the electrical, electrochemical, magnetic, and optical properties of 2D materials, with the potential to achieve high‐performance 2D‐material‐based devices ultimately. This review discusses the experimental and theoretical results from recent advances in the strain engineering of 2D materials. Some novel methods to induce strain are summarized and then the tunable electrical and optical/optoelectronic properties of 2D materials via strain engineering are highlighted, including particularly the previously less‐discussed strain tuning of superconducting, magnetic, and electrochemical properties. Also, future perspectives of strain engineering are given for its potential applications in functional devices. The state of the survey presents the ever‐increasing advantages and popularity of strain engineering for tuning properties of 2D materials. Suggestions and insights for further research and applications in optical, electronic, and spintronic devices are provided.

     
    more » « less
  5. Strain engineering is a natural route to control the electronic and optical properties of two-dimensional (2D) materials. Recently, 2D semiconductors have also been demonstrated as an intriguing host of strain-induced quantum-confined emitters with unique valley properties inherited from the host semiconductor. Here, we study the continuous and reversible tuning of the light emitted by such localized emitters in a monolayer tungsten diselenide embedded in a van der Waals heterostructure. Biaxial strain is applied on the emitters via strain transfer from a lead magnesium niobate–lead titanate (PMN-PT) piezoelectric substrate. Efficient modulation of the emission energy of several localized emitters up to 10 meV has been demonstrated on application of a voltage on the piezoelectric substrate. Further, we also find that the emission axis rotates by∼<#comment/>40∘<#comment/>as the magnitude of the biaxial strain is varied on these emitters. These results elevate the prospect of using all electrically controlled devices where the property of the localized emitters in a 2D host can be engineered with elastic fields for an integrated opto-electronics and nano-photonics platform.

     
    more » « less