Abstract The distinct molecular states — single molecule, assembly, and aggregate — of two ionic macromolecules, TPPE‐APOSS and TPE‐APOSS, are easily distinguishable through their tunable fluorescence emission wavelengths, which reflect variations in intermolecular distances. Both ionic macromolecules contain aggregation‐induced emission (AIE) active moieties whose emission wavelengths are directly correlated to their mutual distances in solution: far away from each other as individual molecules, maintaining a tunable and relatively long distance in electrostatic interactions‐controlled blackberry‐type assemblies (microphase separation), or approaching van der Waals close distance in aggregates (macrophase separation). Furthermore, within the blackberry assemblies, the emission wavelength decreases monotonically with increasing assembly size, indicative of shorter intermolecular distances at nanoscale. The emission changes of TPPE‐APOSS blackberry assemblies can even be visually distinguishable by eyes when their sizes and intermolecular distances are tuned. Molecular dynamics simulations further revealed that macromolecules are confined in various conformations by controllable intermolecular distances within the blackberry structure, thereby resulting in fluorescence emission with tunable wavelength.
more »
« less
Aggregation‐Induced Emissive and Circularly Polarized Homogeneous Sulfono‐γ‐AApeptide Foldamers
Abstract Through continuous efforts in developing a new class of foldamers, homogeneous sulfono‐γ‐AApeptides have been designed and synthesized using tetraphenylethylene (TPE) moieties attached to the backbone as luminogenic sidechains. Based on previous crystal structures, it is found that these foldamers adopted a left‐handed 414‐helix. Due to the constraint of the helical scaffold, the rotation of the TPE moieties is restricted, leading to fluorescent emissive properties with high quantum yields not only at the aggregate state but also in solution. Investigation of the relationship between the structure and fluorescence behavior reveals that emission is induced by the combined effect of the aggregation‐induced emission and the rotated restriction from the backbone. Furthermore, as the packing mode of the luminogens can be precisely adjusted by the helical backbone, these foldamers are found to be circularly polarizable with relatively large luminescence dissymmetry factor. Interestingly, possessing cationic amphipathic structures similar to that of host‐defense peptides, these sulfono‐γ‐AApeptides are able to inhibit the growth of Gram‐positive bacteria, methicillin‐resistantStaphylococcus aureusthrough membrane interactions.
more »
« less
- Award ID(s):
- 1708500
- PAR ID:
- 10456351
- Publisher / Repository:
- Wiley Blackwell (John Wiley & Sons)
- Date Published:
- Journal Name:
- Advanced Optical Materials
- Volume:
- 8
- Issue:
- 14
- ISSN:
- 2195-1071
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
As a major class of foldamers, aromatic oligoamide foldamers have attracted intense interest. The rigidity of aromatic residues and amide linkages allows the development of foldamers with readily predictable, stable conformations. Aromatic oligoamide foldamers having backbones fully constrained by intramolecular hydrogen bonds have attracted wide attention. Depending on their lengths, such foldamers adopt crescent or helical conformations with highly negative inner cavities. Cyclizing the backbone of the aromatic oligoamides affords the corresponding macrocycles which are characterised by persistent shapes and non-deformable inner cavities. With their defined, inner cavities, such aromatic oligoamide foldamers and macrocycles have served as hosts for cationic and polar guests, and as transmembrane channels for transporting ions and molecules. Recent synthetic progress resulted in the construction of multi-turn hollow helices that offer three-dimensional inner pores with adjustable depth. Reducing the number of backbone-constraining hydrogen bonds leads to oligoamides which, with their partially constrained backbones, undergo either solvent- or guest-dependent folding. One class of such aromatic olgioamide foldamders, which offer multiple backbone amide NH groups as hydrogen-bond donors, are designed to bind anions with adjustable affinities.more » « less
-
Abstract Organic semiconducting donor–acceptor polymers are promising candidates for stretchable electronics owing to their mechanical compliance. However, the effect of the electron‐donating thiophene group on the thermomechanical properties of conjugated polymers has not been carefully studied. Here, thin‐film mechanical properties are investigated for diketopyrrolopyrrole (DPP)‐based conjugated polymers with varying numbers of isolated thiophene moieties and sizes of fused thiophene rings in the polymer backbone. Interestingly, it is found that these thiophene units act as an antiplasticizer, where more isolated thiophene rings or bigger fused rings result in an increased glass transition temperature (Tg) of the polymer backbone, and consequently elastic modulus of the respective DPP polymers. Detailed morphological studies suggests that all samples show similar semicrystalline morphology. This antiplasticization effect also exists inpara‐azaquinodimethane‐based conjugated polymers, indicating that this can be a general trend for various conjugated polymer systems. Using the knowledge gained above, a new DPP‐based polymer with increased alkyl side chain density through attaching alky chains to the thiophene unit is engineered. The new DPP polymer demonstrates a record lowTg, and 50% lower elastic modulus than a reference polymer without side‐chain decorated on the thiophene unit. This work provides a general design rule for making low‐Tgconjugated polymers for stretchable electronics.more » « less
-
Abstract We point out the dominant importance of plasma injection effects of relativistic winds from pulsars and black holes. We demonstrate that outside the light cylinder, the magnetically dominated outflows sliding along the helical magnetic field move nearly radially with very large Lorentz factors,γ0≫ 1, imprinted into the flow during pair production within the gaps. Only at larger distances,r≥γ0(c/Ω), does MHD acceleration Γ ∝rtake over. As a result, Blandford–Znajek (BZ)-driven outflows produce spine-brightened images. The best-resolved case of the jet in M87 shows both edge-brightened features, as well as weaker spine-brightened features. Only the spine-brightened component can be BZ driven/originate from the black hole's magnetosphere.more » « less
-
Abstract In this manuscript, we report the first demonstration of controlled helicity in extended graphene nanoribbons (GNRs). We present a wealth of new graphene nanoribbons that are a direct consequence of the high‐yielding and robust synthetic method revealed in this study. We created a series of defect‐free, ultralong, chiral cove‐edged graphene nanoribbons where helical twisting of the graphene nanoribbon backbone is tuned through functionalization with chiral side chains.S‐configured point chiral centers in the side chains transfer their chiral information to induce a helically chiral, right‐handed twist in the graphene nanoribbon. As the backbone is extended, these helically twisted graphene nanoribbons exhibit a substantial increase in their circular dichroic response. The longest variant synthesized consists of an average of 268 linearly fused rings, reaching 65 nm in average length with nearly 10 full end‐to‐end helical rotations. The structure exhibits an extraordinary |Δε| value of 6780 M−1cm−1at 550 nm—the highest recorded for an organic molecule in the visible wavelength range. This new chiroptic material acts as room‐temperature spin filters in thin films due to its chirality‐induced spin selectivity.more » « less
An official website of the United States government
