skip to main content


Title: Orthogonal Halogen‐Bonding‐Driven 3D Supramolecular Assembly of Right‐Handed Synthetic Helical Peptides
Abstract

Peptide‐mediated self‐assembly is a prevalent method for creating highly ordered supramolecular architectures. Herein, we report the first example of orthogonal C−X⋅⋅⋅X−C/C−X⋅⋅⋅π halogen bonding and hydrogen bonding driven crystalline architectures based on synthetic helical peptides bearing hybrids ofl‐sulfono‐γ‐AApeptides and natural amino acids. The combination of halogen bonding, intra‐/intermolecular hydrogen bonding, and intermolecular hydrophobic interactions enabled novel 3D supramolecular assembly. The orthogonal halogen bonding in the supramolecular architecture exerts a novel mechanism for the self‐assembly of synthetic peptide foldamers and gives new insights into molecular recognition, supramolecular design, and rational design of biomimetic structures.

 
more » « less
NSF-PAR ID:
10102455
Author(s) / Creator(s):
 ;  ;  ;  ;  ;  ;  ;  
Publisher / Repository:
Wiley Blackwell (John Wiley & Sons)
Date Published:
Journal Name:
Angewandte Chemie
Volume:
131
Issue:
23
ISSN:
0044-8249
Page Range / eLocation ID:
p. 7860-7864
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    Peptide‐mediated self‐assembly is a prevalent method for creating highly ordered supramolecular architectures. Herein, we report the first example of orthogonal C−X⋅⋅⋅X−C/C−X⋅⋅⋅π halogen bonding and hydrogen bonding driven crystalline architectures based on synthetic helical peptides bearing hybrids ofl‐sulfono‐γ‐AApeptides and natural amino acids. The combination of halogen bonding, intra‐/intermolecular hydrogen bonding, and intermolecular hydrophobic interactions enabled novel 3D supramolecular assembly. The orthogonal halogen bonding in the supramolecular architecture exerts a novel mechanism for the self‐assembly of synthetic peptide foldamers and gives new insights into molecular recognition, supramolecular design, and rational design of biomimetic structures.

     
    more » « less
  2. Abstract

    [2.2]paracyclophane (pCp), unlike many π‐building blocks, has been virtually unexplored in supramolecular constructs. Reported here is the synthesis and characterization of the first pCp derivatives capable of programmed self‐assembly into extended cofacial π‐stacks in solution and the solid state. The design employs transannular (intramolecular) hydrogen bonds (H‐bonds), hitherto unstudied in pCps, between pseudo‐ortho‐positioned amides of a pCp‐4,7,12,15‐tetracarboxamide (pCpTA) to preorganize the molecules for intermolecular H‐bonding with π‐stacked neighbors. X‐ray crystallography confirms the formation of homochiral, one‐dimensional pCpTA stacks helically laced with two H‐bond strands. The chiral sense is dictated by the planar chirality (RporSp) of the pCpTA monomers. A combination of NMR, IR, and UV/Vis studies confirms the formation of the first supramolecular pCp polymers in solution.

     
    more » « less
  3. Abstract

    Self‐assembled peptide materials have emerged as promising bioinspired tools for applications that include regenerative medicine, drug delivery, antimicrobial and vaccine development, optics, and catalysis. Peptide self‐assembly mediated by noncovalent hydrogen bonding, coulombic, hydrophobic, and aromatic interactions gives rise to a variety of supramolecular structures that reflect on the nature of the constituent peptides. The emergent properties of these supramolecular peptide materials often depend on the multivalent presentation of functional appendages on the self‐assembled scaffold. For example, the multivalent display of cell‐signaling motifs on self‐assembled peptide nanofibrils provides materials that are excellent extracellular matrix mimetics for tissue engineering applications. This review includes a discussion of chemical strategies that address the challenge of appending functional signal motifs in a multivalent display on self‐assembled peptide and protein materials. In addition, recent examples of supramolecular peptide materials that rely on the multivalent display of chemical signals for the desired applications are presented. Collectively, this discussion illustrates the potential of self‐assembled peptides as sustainable materials to address challenges in contemporary materials science and provides principles for the design of next‐generation agents for a variety of applications.

     
    more » « less
  4. Designing materials to have three unique but predictable thermal expansion axes represents a major challenge. Inorganic materials and hybrid frameworks tend to crystallize in high-symmetry space groups, which necessarily limits this by affording isotropic behavior. On the other hand, molecular organic materials tend to crystallize in lower-symmetry space groups, offering significant opportunity to achieve anisotropic properties. The challenge arises in self-assembling the organic components into a predictable arrangement to afford predictable thermal expansion properties. Here, we demonstrate a design strategy for engineering organic solid-state materials that exhibit anisotropic thermomechanical behaviors. Presented are a series of multicomponent solids wherein one component features a BODPIY core strategically decorated with orthogonal hydrogen- and halogen-bond donor groups. A series of size-matched halogen-bond acceptors are used as the second component in each solid. By matching the molecular dimensions with the interaction strength, we obtained good control over the anisotropic thermal expansion of the molecular materials. Moreover, using shape-size mimicry and propensity for molecular motion, a rare ternary molecular system that is isostructural to the two binary solids was successfully achieved. The diiodo-functionalized BODIPY core in this study has been previously used in photocatalysts, and halogen bonding was hypothesized as a driving force; here, we provide corroborating solution and solid-state evidence of intermolecular halogen bonding in multicomponent solids featuring a 2,6-diiodo BODIPY. 
    more » « less
  5. Abstract

    The combination of multiple orthogonal interactions enables hierarchical complexity in self‐assembled nanoscale materials. Here, efficient supramolecular polymerization of DNA origami nanostructures is demonstrated using a multivalent display of small molecule host–guest interactions. Modification of DNA strands with cucurbit[7]uril (CB[7]) and its adamantane guest, yielding a supramolecular complex with an affinity of order 1010m−1, directs hierarchical assembly of origami monomers into 1D nanofibers. This affinity regime enables efficient polymerization; a lower‐affinity β‐cyclodextrin–adamantane complex does not promote extended structures at a similar valency. Finally, the utility of the high‐affinity CB[7]–adamantane interactions is exploited to enable responsive enzymatic actuation of origami nanofibers assembled using peptide linkers. This work demonstrates the power of high‐affinity CB[7]–guest recognition as an orthogonal axis to drive self‐assembly in DNA nanotechnology.

     
    more » « less