skip to main content


Title: Self‐Aligned Anisotropic Plasmonic Nanostructures
Abstract

Great opportunities emerge not only in the generation of anisotropic plasmonic nanostructures but also in controlling their orientation relative to incident light. Herein, a stepwise seeded growth method is reported for the synthesis of rod‐shaped plasmon nanostructures which are vertically self‐aligned with respect to the surface of colloidal substrates. Anisotropic growth of metal nanostructure is achieved by depositing metal seeds onto the surface of colloidal substrates and then selectively passivating the seed surface to induce symmetry breaking in the subsequent seed‐mediated growth process. The versatility of this method is demonstrated by producing nanoparticle dimers and linear trimers of Au, Au–Ag, Au–Pd, and Au–Cu2O. Further, this unique method enables the automatic vertical alignment of the resulting plasmonic nanostructures to the surface of the colloidal substrate, thereby making it possible to design magnetic/plasmonic nanocomposites that allow the dynamic tuning of the plasmon excitation by controlling their orientation using an external magnetic field. The controlled anisotropic growth of colloidal plasmonic nanostructures and their dynamic modulation of plasmon excitation further allow them to be conveniently fixed in a thin polymer film with a well‐controlled orientation to display polarization‐dependent patterns that may find important applications in information encryption.

 
more » « less
Award ID(s):
1808788
NSF-PAR ID:
10461119
Author(s) / Creator(s):
 ;  ;  ;  ;  ;  
Publisher / Repository:
Wiley Blackwell (John Wiley & Sons)
Date Published:
Journal Name:
Advanced Materials
Volume:
31
Issue:
19
ISSN:
0935-9648
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Controlled growth of islands on plasmonic metal nanoparticles represents a novel strategy in creating unique morphologies that are difficult to achieve by conventional colloidal synthesis processes, where the nanoparticle morphologies are typically determined by the preferential development of certain crystal facets. This work exploits an effective surface-engineering strategy for site-selective island growth of Au on anisotropic Au nanostructures. Selective ligand modification is first employed to direct the site-selective deposition of a thin transition layer of a secondary metal, e.g., Pd, which has a considerable lattice mismatch with Au. The selective deposition of Pd on the original seeds produces a high contrast in the surface strain that guides the subsequent site-selective growth of Au islands. This strategy proves effective in not only inducing the island growth of Au on Au nanostructures but also manipulating the location of grown islands. By taking advantage of the iodide-assisted oxidative ripening process and the surface strain profile on Au nanostructures, we further demonstrate the precise control of the islands’ number, coverage, and wetting degree, allowing fine-tuning of nanoparticles’ optical properties. 
    more » « less
  2. Abstract

    Seed-mediated synthesis strategies, in which small gold nanoparticle precursors are added to a growth solution to initiate heterogeneous nucleation, are among the most prevalent, simple, and productive methodologies for generating well-defined colloidal anisotropic nanostructures. However, the size, structure, and chemical properties of the seeds remain poorly understood, which partially explains the lack of mechanistic understanding of many particle growth reactions. Here, we identify the majority component in the seed solution as an atomically precise gold nanocluster, consisting of a 32-atom Au core with 8 halide ligands and 12 neutral ligands constituting a bound ion pair between a halide and the cationic surfactant: Au32X8[AQA+•X-]12(X = Cl, Br; AQA = alkyl quaternary ammonium). Ligand exchange is dynamic and versatile, occurring on the order of minutes and allowing for the formation of 48 distinct Au32clusters with AQAX (alkyl quaternary ammonium halide) ligands. Anisotropic nanoparticle syntheses seeded with solutions enriched in Au32X8[AQA+•X-]12show narrower size distributions and fewer impurity particle shapes, indicating the importance of this cluster as a precursor to the growth of well-defined nanostructures.

     
    more » « less
  3. Abstract

    Engineering the nucleation and growth of plasmonic metals (Ag and Au) on their pre‐existing seeds is expected to produce nanostructures with unconventional morphologies and plasmonic properties that may find unique applications in sensing, catalysis, and broadband energy harvesting. Typical seed‐mediated growth processes take advantage of the perfect lattice match between the deposited metal and seeds to induce conformal coating, leading to either simple size increases (e.g., Au on Au) or the formation of core–shell structures (e.g., Ag on Au) with limited morphology change. In this work, we show that the introduction of a thin layer of metal with considerable lattice mismatch can effectively induce the nucleation of well‐defined Au islands on Au nanocrystal seeds. By controlling the interfacial energy between the seed and the deposited material, the oxidative ripening, and the surface diffusion of metal precursors, we can regulate the number of islands on the seeds and produce complex Au nanostructures with morphologies tunable from core‐satellites to tetramers, trimers, and dimers.

     
    more » « less
  4. Abstract

    Engineering the nucleation and growth of plasmonic metals (Ag and Au) on their pre‐existing seeds is expected to produce nanostructures with unconventional morphologies and plasmonic properties that may find unique applications in sensing, catalysis, and broadband energy harvesting. Typical seed‐mediated growth processes take advantage of the perfect lattice match between the deposited metal and seeds to induce conformal coating, leading to either simple size increases (e.g., Au on Au) or the formation of core–shell structures (e.g., Ag on Au) with limited morphology change. In this work, we show that the introduction of a thin layer of metal with considerable lattice mismatch can effectively induce the nucleation of well‐defined Au islands on Au nanocrystal seeds. By controlling the interfacial energy between the seed and the deposited material, the oxidative ripening, and the surface diffusion of metal precursors, we can regulate the number of islands on the seeds and produce complex Au nanostructures with morphologies tunable from core‐satellites to tetramers, trimers, and dimers.

     
    more » « less
  5. Abstract

    Light coupling with patterned subwavelength hole arrays induces enhanced transmission supported by the strong surface plasmon mode. In this work, a nanostructured plasmonic framework with vertically built‐in nanohole arrays at deep‐subwavelength scale (6 nm) is demonstrated using a two‐step fabrication method. The nanohole arrays are formed first by the growth of a high‐quality two‐phase (i.e., Au–TiN) vertically aligned nanocomposite template, followed by selective wet‐etching of the metal (Au). Such a plasmonic nanohole film owns high epitaxial quality with large surface coverage and the structure can be tailored as either fully etched or half‐way etched nanoholes via careful control of the etching process. The chemically inert and plasmonic TiN plays a role in maintaining sharp hole boundary and preventing lattice distortion. Optical properties such as enhanced transmittance and anisotropic dielectric function in the visible regime are demonstrated. Numerical simulation suggests an extended surface plasmon mode and strong field enhancement at the hole edges. Two demonstrations, including the enhanced and modulated photoluminescence by surface coupling with 2D perovskite nanoplates and the refractive index sensing by infiltrating immersion liquids, suggest the great potential of such plasmonic nanohole array for reusable surface plasmon‐enhanced sensing applications.

     
    more » « less