skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Effects of the soil microbiome on the demography of two annual prairie plants
Abstract Both mutualistic and pathogenic soil microbes are known to play important roles in shaping the fitness of plants, likely affecting plants at different life cycle stages.In order to investigate the differential effects of native soil mutualists and pathogens on plant fitness, we compared survival and reproduction of two annual tallgrass prairie plant species (Chamaecrista fasciculataandCoreopsis tinctoria) in a field study using 3 soil inocula treatments containing different compositions of microbes. The soil inocula types included fresh native whole soil taken from a remnant prairie containing both native mutualists and pathogens, soil enhanced with arbuscular mycorrhizal (AM) fungi derived from remnant prairies, and uninoculated controls.For both species, plants inoculated with native prairie AM fungi performed much better than those in uninoculated soil for all parts of the life cycle. Plants in the native whole prairie soil were either generally similar to plants in the uninoculated soil or had slightly higher survival or reproduction.Overall, these results suggest that native prairie AM fungi can have important positive effects on the fitness of early successional plants. As inclusion of prairie AM fungi and pathogens decreased plant fitness relative to prairie AM fungi alone, we expect that native pathogens also can have large effects on fitness of these annuals. Our findings support the use of AM fungi to enhance plant establishment in prairie restorations.  more » « less
Award ID(s):
1656006
PAR ID:
10456536
Author(s) / Creator(s):
 ;  ;  ;  ;  ;  
Publisher / Repository:
Wiley Blackwell (John Wiley & Sons)
Date Published:
Journal Name:
Ecology and Evolution
Volume:
10
Issue:
13
ISSN:
2045-7758
Page Range / eLocation ID:
p. 6208-6222
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Summary Interactions between plants and soil fungi and bacteria are ubiquitous and have large effects on individual plant fitness. However, the degree to which spatial variation in soil microbial communities modulates plant species’ distributions remains largely untested.Using the California native plantClarkia xantianassp.xantianawe paired glasshouse and field reciprocal transplants of plant populations and soils to test whether plant–microbe interactions affect the plant’s geographic range limit and whether there is local adaptation between plants and soil microbe communities.In the field and glasshouse, one of the two range interior inocula had a positive effect on plant fitness. In the field, this benefit was especially pronounced at the range edge and beyond, suggesting possible mutualist limitation. In the glasshouse, soil inocula from beyond‐range tended to increase plant growth, suggesting microbial enemy release beyond the range margin. Amplicon sequencing revealed stark variation in microbial communities across the range boundary.Plants dispersing beyond their range limit are likely to encounter novel microbial communities. InC. x. xantiana, our results suggest that range expansion may be facilitated by fewer pathogens, but could also be hindered by a lack of mutualists. Both negative and positive plant–microbe interactions will likely affect contemporary range shifts. 
    more » « less
  2. Abstract Plant‐microbial‐herbivore interactions play a crucial role in the structuring and maintenance of plant communities and biodiversity, yet these relationships are complex. In grassland ecosystems, herbivores have the potential to greatly influence the survival, growth and reproduction of plants. However, few studies examine interactions of above‐ and below‐ground grazing and arbuscular mycorrhizal (AM) mycorrhizal symbiosis on plant community structure.We established experimental mesocosms containing an assemblage of eight tallgrass prairie grass and forb species in native prairie soil, maintained under mycorrhizal and nonmycorrhizal conditions, with and without native herbivorous soil nematodes, and with and without grasshopper herbivory. Using factorial analysis of variance and principal component analysis, we examined: (a) the independent and interacting effects of above‐ and below‐ground herbivores on AM symbiosis in tallgrass prairie mesocosms, (b) independent and interacting effects of above‐ and below‐ground herbivores and mycorrhizal fungi on plant community structure and (c) potential influences of mycorrhizal responsiveness of host plants on herbivory tolerance and concomitant shifts in plant community composition.Treatment effects were characterized by interactions between AM fungi and both above‐ground and below‐ground herbivores, while herbivore effects were additive. The dominance of mycorrhizal‐dependent C4grasses in the presence of AM symbiosis was increased (p < 0.0001) by grasshopper herbivory but reduced (p < 0.0001) by nematode herbivory. Cool‐season C3grasses exhibited a competitive release in the absence of AM symbiosis but this effect was largely reversed in the presence of grasshopper herbivory. Forbs showed species‐specific responses to both AM fungal inoculation and the addition of herbivores. Biomass of the grazing‐avoidant, facultatively mycotrophic forbBrickellia eupatorioidesincreased (p < 0.0001) in the absence of AM symbiosis and with grasshopper herbivory, while AM‐related increases in the above‐ground biomass of mycorrhizal‐dependent forbsRudbeckia hirtaandSalvia azureawere eradicated (p < 0.0001) by grasshopper herbivory. In contrast, nematode herbivory enhanced (p = 0.001) the contribution ofSalvia azureato total biomass.Synthesis. Our research indicates that arbuscular mycorrhizal symbiosis is the key driver of dominance of C4grasses in the tallgrass prairie, with foliar and root herbivory being two mechanisms for maintenance of plant diversity. 
    more » « less
  3. Abstract The plant microbiome is critical to plant health and is degraded with anthropogenic disturbance. However, the value of re‐establishing the native microbiome is rarely considered in ecological restoration. Arbuscular mycorrhizal (AM) fungi are particularly important microbiome components, as they associate with most plants, and later successional grassland plants are strongly responsive to native AM fungi.With five separate sites across the United States, we inoculated mid‐ and late successional plant seedlings with one of three types of native microbiome amendments: (a) whole rhizosphere soil collected from local old‐growth, undisturbed grassland communities in Illinois, Kansas or Oklahoma, (b) laboratory cultured AM fungi from these same old‐growth grassland sites or (c) no microbiome amendment. We also seeded each restoration with a diverse native seed mixture. Plant establishment and growth was followed for three growing seasons.The reintroduction of soil microbiome from native ecosystems improved restoration establishment.Including only native arbuscular mycorrhizal fungal communities produced similar improvements in plant establishment as what was found with whole soil microbiome amendment. These findings were robust across plant functional groups.Inoculated plants (amended with either AM fungi or whole soil) also grew more leaves and were generally taller during the three growing seasons.Synthesis and applications. Our research shows that mycorrhizal fungi can accelerate plant succession and that the reintroduction of both whole soil and laboratory cultivated native mycorrhizal fungi can be used as tools to improve native plant restoration following anthropogenic disturbance. 
    more » « less
  4. Although several studies have shown increased native plant establishment with native microbe soil amendments, few studies have investigated how microbes can alter seedling recruitment and establishment in the presence of a non-native competitor. In this study, the effect of microbial communities on seedling biomass and diversity was assessed by seeding pots with both native prairie seeds and a non-native grass that commonly invades US grassland restorations, Setaria faberi. Soil in the pots was inoculated with whole soil collections from ex-arable land, late successional arbuscular mycorrhizal (AM) fungi isolated from a nearby tallgrass prairie, with both prairie AM fungi and ex-arable whole soil, or with a sterile soil (control). We hypothesized (1) late successional plants would benefit from native AM fungi, (2) that non-native plants would outcompete native plants in ex-arable soils, and (3) early successional plants would be unresponsive to microbes. Overall, native plant abundance, late successional plant abundance, and total diversity were greatest in the native AM fungi+ ex-arable soil treatment. These increases led to decreased abundance of the non-native grass S. faberi. These results highlight the importance of late successional native microbes on native seed establishment and demonstrate that microbes can be harnessed to improve both plant community diversity and resistance to invasion during the nascent stages of restoration. 
    more » « less
  5. Summary Arbuscular mycorrhizal fungi (AMF) are critical to native plant community ecology and influence plant invasions. Research has focused on nutritional benefits of AMF, although evidence shows that they may also confer pathogen resistance. However, most such work has focused on agriculturally relevant plant species. Therefore, whether AMF confer pathogen resistance tonative(wild) plant species, and impact of novel plant–microbial relationships on this benefit, remains understudied.We conducted a series of experiments measuring mycorrhizal‐induced resistance (MIR) to pathogens in native prairie plant species. We tested for pathogenicity across 69 field‐isolated fungi and oomycetes across five plant species. We then conducted experiments assessing growth response to native and non‐native AMF and pathogens in three plant species from native populations and milkweed (Asclepias syriaca) from native and postagricultural populations.We found evidence of MIR in milkweed. Moreover, we identified differential effects of AMF depending on plant species, with milkweed from native populations showing benefits from AMF. Finally, growth response was mediated by local adaptation, with matching AMF–pathogen origin strengthening responses.This work illustrates the importance of locally sourced AMF and plants to native plant ecology and suggests that pathogen resistance may be an important dimension of AMF benefit. 
    more » « less