skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.

Attention:

The NSF Public Access Repository (PAR) system and access will be unavailable from 10:00 PM ET on Friday, February 6 until 10:00 AM ET on Saturday, February 7 due to maintenance. We apologize for the inconvenience.


Title: Mycorrhizal‐herbivore interactions and the competitive release of subdominant tallgrass prairie species
Abstract Plant‐microbial‐herbivore interactions play a crucial role in the structuring and maintenance of plant communities and biodiversity, yet these relationships are complex. In grassland ecosystems, herbivores have the potential to greatly influence the survival, growth and reproduction of plants. However, few studies examine interactions of above‐ and below‐ground grazing and arbuscular mycorrhizal (AM) mycorrhizal symbiosis on plant community structure.We established experimental mesocosms containing an assemblage of eight tallgrass prairie grass and forb species in native prairie soil, maintained under mycorrhizal and nonmycorrhizal conditions, with and without native herbivorous soil nematodes, and with and without grasshopper herbivory. Using factorial analysis of variance and principal component analysis, we examined: (a) the independent and interacting effects of above‐ and below‐ground herbivores on AM symbiosis in tallgrass prairie mesocosms, (b) independent and interacting effects of above‐ and below‐ground herbivores and mycorrhizal fungi on plant community structure and (c) potential influences of mycorrhizal responsiveness of host plants on herbivory tolerance and concomitant shifts in plant community composition.Treatment effects were characterized by interactions between AM fungi and both above‐ground and below‐ground herbivores, while herbivore effects were additive. The dominance of mycorrhizal‐dependent C4grasses in the presence of AM symbiosis was increased (p < 0.0001) by grasshopper herbivory but reduced (p < 0.0001) by nematode herbivory. Cool‐season C3grasses exhibited a competitive release in the absence of AM symbiosis but this effect was largely reversed in the presence of grasshopper herbivory. Forbs showed species‐specific responses to both AM fungal inoculation and the addition of herbivores. Biomass of the grazing‐avoidant, facultatively mycotrophic forbBrickellia eupatorioidesincreased (p < 0.0001) in the absence of AM symbiosis and with grasshopper herbivory, while AM‐related increases in the above‐ground biomass of mycorrhizal‐dependent forbsRudbeckia hirtaandSalvia azureawere eradicated (p < 0.0001) by grasshopper herbivory. In contrast, nematode herbivory enhanced (p = 0.001) the contribution ofSalvia azureato total biomass.Synthesis. Our research indicates that arbuscular mycorrhizal symbiosis is the key driver of dominance of C4grasses in the tallgrass prairie, with foliar and root herbivory being two mechanisms for maintenance of plant diversity.  more » « less
Award ID(s):
2025849
PAR ID:
10634197
Author(s) / Creator(s):
; ;
Publisher / Repository:
British Ecological Society
Date Published:
Journal Name:
Journal of Ecology
Volume:
113
Issue:
6
ISSN:
0022-0477
Page Range / eLocation ID:
1409 to 1421
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract Grasslands are expected to experience droughts of unprecedented frequency and magnitude in the future. Characterizing grassland responses and recovery from drought is therefore critical to predict the vulnerability of grassland ecosystems to climate change. Most previous studies have focused on ecosystem responses during drought while investigations of post‐drought recovery are rare. Few studies have used functional traits, and in particular bud or clonal traits, to explore the mechanisms underlying grassland responses to and recovery from drought.To address this issue, we experimentally imposed a four‐year drought in a C3‐dominated grassland in northeastern China and monitored recovery for 3 years post‐drought. We investigated the immediate and legacy effects of drought on total above‐ground net primary productivity (ANPP), ANPP of functional groups (rhizomatous grasses, bunch grasses and forbs), and how the legacy effects were driven by plant species diversity, clonal traits and vegetative traits.We found that drought progressively reduced total ANPP over the 4‐year period. The reductions in total ANPP in the first and third drought years were caused by the decrease in ANPP of bunch grasses only, while that of the second year was caused by declines in ANPP of bunch grasses and forbs, and the fourth year decline was linked to all three functional groups. The post‐drought recovery of ANPP, which occurred despite the continued loss of plant species diversity, was mainly driven by rapid recovery of rhizomatous and bunch grasses, which compensated for the slow response by forbs. The rapid post‐drought recovery of these grasses can be attributed to their relatively large, intact bud and shoot densities post‐drought, as well as the recovery of plant height and specific leaf area. The rapid recovery of grasses possibly restricted the growth and distribution of forbs, resulting in reduced forb ANPP and, consequently, lower species diversity during the recovery period.Synthesis. These results highlight the potential for positive legacy effects of drought on ANPP as well as the important and complementary roles of plant reproductive and vegetative traits in mediating ecosystem recovery from drought in a C3‐dominated grassland. 
    more » « less
  2. Abstract Two of the major factors that control the composition of herbaceous plant communities are competition for limiting soil resources and herbivory. We present results from a 14-year full factorial experiment in a tallgrass prairie ecosystem that crossed nitrogen (N) addition with fencing to exclude white-tailed deer,Odocoileus virginianus, from half the plots. Deer presence was associated with only modest decreases in aboveground plant biomass (14% decrease; −45 ± 19 g m−2) with no interaction with N addition. N addition at 5.44 and 9.52 g N m−2 year−1led to increases in biomass. There were weak increases in species richness associated with deer presence, but only for no or low added N (1 and 2 g N m−2 year−1). However, the presence of deer greatly impacted the abundances of some of the dominant perennial forb species, but not the dominant grasses. Deer presence increased the abundance of the forbArtemisia ludovicianaby 34 ± 12 SE g m−2(94%) and decreased the forbSolidago rigidaby 32 ± 13 SE g m−2(79%). We suggest that these changes may have resulted from trade-offs in plant competitive ability for soil N versus resistance to deer herbivory. Field observations suggest deer acted as florivores, mainly consuming the flowers of susceptible forb species. The preferential consumption of flowers of forbs that seem to be superior N competitors appears to create an axis of interspecific niche differentiation. The overpopulation of white-tailed deer in many tallgrass reserves likely structures the abundance of forb species. 
    more » « less
  3. Abstract Roots are essential to the diversity and functioning of plant communities, but trade‐offs in rooting strategies are still poorly understood.We evaluated existing frameworks of rooting strategy trade‐offs and tested their underlying assumptions, guided by the hypothesis that community‐level rooting strategies are best described by a combination of variation in organ‐level traits, plant‐level root:shoot allocation and symbiosis‐level mycorrhizal dependency. We tested this hypothesis using data on plant community structure, above‐ and below‐ground biomass, eight root traits including mycorrhizal colonisation and soil properties from an edaphic gradient driven by elevation and water availability in sandhills prairie, Nebraska, USA.We found multidimensional trade‐offs in rooting strategies represented by a two‐way productivity‐durability trade‐off axis (captured by root length density and root dry matter content) and a three‐way resource acquisition trade‐off between specific root length, root:shoot mass ratio and mycorrhizal dependence. Variation in rooting strategies was driven to similar extents by interspecific differences and intraspecific responses to soil properties.Organ‐level traits alone were insufficient to capture community‐level trade‐offs in rooting strategies across the edaphic gradient. Instead, trait variation encompassing organ, plant and symbiosis levels revealed that consideration of whole‐plant phenotypic integration is essential to defining multidimensional trade‐offs shaping the functional variation of root systems. Read the freePlain Language Summaryfor this article on the Journal blog. 
    more » « less
  4. Grazing as a management tool is often intended to alter plant community dynamics through preferential foraging. Bison diet in the western United States has been well studied, especially in short and mixed grass remnant prairies. However, there is little known about what bison consume in restored and tallgrass prairies. As bison reintroductions are used more commonly in eastern tallgrass prairies, it is important to understand their diet to predict future impacts on prairie plant communities. This study aims to understand bison diet across different seasons, and asks whether diet differs among male and female, and differently aged bison. We used stable isotope analysis to quantify δ13C and δ15N in plants and used a Bayesian isotope mixing model to estimate bison diet. We found bulls relied more heavily on C4plants and wetland plants than cows, which relied more heavily on forbs, but no differences in diet between ages. Our analysis shows that bison primarily grazed on C4grasses throughout the late spring and summer. However, bison foraged more on wetland species and forbs in the late summer and fall. This change in diet could have implications for wetland species and habitats, through dung inputs and trampling. The relatively high reliance on forbs for nearly one‐third of bison diet could mean intended impacts of reintroduced bison such as increased plant diversity through preferential grazing on grasses could be dampened. Managers reintroducing bison to restored prairie ecosystems should ensure adequate wetland and forb species, in addition to a mix of grasses. 
    more » « less
  5. Abstract Many of the disturbance‐sensitive, late successional plant species in grasslands respond to arbuscular mycorrhizal (AM) fungi more positively via growth and establishment than plants that readily establish in disturbed areas (i.e. early successional species). Inoculation with AM fungi can therefore aid the establishment of late successional species in disturbed areas. If the differential benefit of AM fungi to late versus early successional plants is context‐dependent, however, this advantage could be diminished in high phosphorus (P) post‐agricultural soils or in future climates with altered precipitation.In this greenhouse experiment, we tested if late successional plant species are less plastic in their reliance on AM fungi than early successional plants by growing 17 plant species of different successional status (9 early and 8 late successional) in full factorial combinations of inoculated or uninoculated with AM fungi, with ambient or high P levels, and with low or high levels of water.AM fungi positively affected the biomass of the 17 grassland plant species, but across all environments, late successional plant species generally responded more positively to AM fungi than early successional plants species.AM fungal growth promotion and change in below‐ground biomass allocation was generally diminished with P fertilizer across all plant species, and while there was significant variation among plant species in the sensitivity of AM fungal responsiveness to P fertilization, this differential sensitivity was not predicted by plant successional status.The role of AM fungi in plant growth promotion was not generally altered by variation in watering, however late successional plant species allocated a greater proportion of their biomass below‐ground in response to AM fungi in low versus high water conditions.Synthesis. Overall greater responsiveness to arbuscular mycorrhizal (AM) fungi by late successional species is consistent with an important role of AM fungi in plant succession, even while AM fungi are less impactful overall in high P soils. However, the increase in responsiveness of below‐ground allocation of late successional species to AM fungi in low water conditions suggests that successional dynamics may be more dependent on AM fungi in future climates that feature greater propensity for drought. 
    more » « less