Manipulation of microparticles and bio-samples is a critical task in many research and clinical settings. Recently, acoustic based methods have garnered significant attention due to their relatively simple designs, and biocompatible and precise manipulation of small objects. Herein, we introduce a flexural wave based acoustofluidic manipulation platform that utilizes low-frequency (4–6 kHz) commercial buzzers to achieve dynamic particle concentration and translation in an open fluid well. The device has two primary modes of functionality, wherein particles can be concentrated in pressure nodes that are present on the bottom surface of the device, or particles can be trapped and manipulated in streaming vortices within the fluid domain; both of these functions result from flexural mode vibrations that travel from the transducers throughout the device. Throughout our research, we numerically and experimentally explored the wave patterns generated within the device, investigated the particle concentration phenomenon, and utilized a phase difference between the two transducers to achieve precision movement of fluid vortices and the entrapped particle clusters. With its simple, low-cost nature and open fluidic chamber design, this platform can be useful in many biological, biochemical, and biomedical applications, such as tumor spheroid generation and culture, as well as the manipulation of embryos.
more »
« less
Open Wave Height Logger: An open source pressure sensor data logger for wave measurement
Abstract Wave‐generated flows, associated hydrodynamic forces, and disturbances created by them play critical roles in determining the structure and health of near‐shore coastal ecosystems. Oscillatory motions produced by waves increase delivery of nutrients and food to benthic organisms, and can enhance vertical mixing to facilitate delivery of larvae and spores to the seafloor. At the same time, wave disturbances can remove individuals and biomass with far‐reaching effects on critical coastal ecosystems and the biodiversity within them. Commercial instruments designed to measure wave characteristics and the effects of wave energy can be expensive to purchase and deploy, limiting their use in large quantities or in areas where they may be lost. We have developed an inexpensive open‐source pressure transducer data logger based on an Arduino microcontroller that can be used to characterize wave conditions for deployments lasting multiple months. Our design criteria centered around simplicity, longevity, low cost, and ease of use for researchers. Housed in ubiquitous polyvinylchloride (PVC) plumbing and constructed primarily with readily available materials, the Open Wave Height Logger (OWHL) can be fabricated in a college setting with basic shop tools. The OWHL performs comparably to commercial pressure‐based wave height data loggers during tests in the field, creating the opportunity to expand the use of these sensors for applications where sufficient spatial replication or risk of instrument loss would otherwise be cost prohibitive.
more »
« less
- PAR ID:
- 10456539
- Publisher / Repository:
- Wiley Blackwell (John Wiley & Sons)
- Date Published:
- Journal Name:
- Limnology and Oceanography: Methods
- Volume:
- 18
- Issue:
- 7
- ISSN:
- 1541-5856
- Format(s):
- Medium: X Size: p. 335-345
- Size(s):
- p. 335-345
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Abstract A set of realistic coastal simulations in California allows for the exploration of surface gravity wave effects on currents (WEC) in an active submesoscale current regime. We use a new method that takes into account the full surface gravity wave spectrum and produces larger Stokes drift than the monochromatic peak-wave approximation. We investigate two high-wave events lasting several days—one from a remotely generated swell and another associated with local wind-generated waves—and perform a systematic comparison between solutions with and without WEC at two submesoscale-resolving horizontal grid resolutions (dx= 270 and 100 m). WEC results in the enhancement of open-ocean surface density and velocity gradients when the averaged significant wave heightHsis relatively large (>4.2 m). For smaller waves, WEC is a minor effect overall. For the remote swell (strong waves and weak winds), WEC maintains submesoscale structures and accentuates the cyclonic vorticity and horizontal convergence skewness of submesoscale fronts and filaments. The vertical enstrophyζ2budget in cyclonic regions (ζ/f> 2) reveals enhanced vertical shear and enstrophy production via vortex tilting and stretching. Wind-forced waves also enhance surface gradients, up to the point where they generate a small-submesoscale roll-cell pattern with high vorticity and divergence that extends vertically through the entire mixed layer. The emergence of these roll cells results in a buoyancy gradient sink near the surface that causes a modest reduction in the typically large submesoscale density gradients.more » « less
-
null (Ed.)Abstract Shorelines and their ecosystems are endangered by sea-level rise. Nature-based coastal protection is becoming a global strategy to enhance coastal resilience through the cost-effective creation, restoration and sustainable use of coastal wetlands. However, the resilience to sea-level rise of coastal wetlands created under Nature-based Solution has been assessed largely on a regional scale. Here we assess, using a meta-analysis, the difference in accretion, elevation, and sediment deposition rates between natural and restored coastal wetlands across the world. Our results show that restored coastal wetlands can trap more sediment and that the effectiveness of these restoration projects is primarily driven by sediment availability, not by wetland elevation, tidal range, local rates of sea-level rise, and significant wave height. Our results suggest that Nature-based Solutions can mitigate coastal wetland vulnerability to sea-level rise, but are effective only in coastal locations where abundant sediment supply is available.more » « less
-
Abstract Using observations, numerical models, and theory, we explore a framework to classify reefs as open or closed based on their dynamics. While the concepts of open and closed reefs are used widely in studies of coral reef hydrodynamics and are generally based on geometry, there is no consensus on what qualifies as open and closed. With observations from Ofu, American Samoa, we show that the reef flat exhibits two different dynamical regimes depending on tidal and wave forcing. Flow over this reef flat resembles a classic one‐dimensional barrier reef flow during low tide, where wave setup creates a cross‐reef pressure gradient which forces flow on the flat. On high tide, however, flow on the flat is oblique to the crest, and at times directed offshore. We reproduce this behavior in an idealized numerical model of a fringing reef. We classify open reefs as a condition where an onshore, wave‐generated pressure gradient is balanced by friction, and closed reefs as a condition where an onshore radiation stress gradient is opposed by an offshore pressure gradient. Results from the fringing reef model show that the system transitions between open and closed behavior over a tidal cycle. Results from an additional barrier reef numerical model exhibits almost exclusively open reef behavior, for which we derive a simple theoretical model. We argue that classifying reefs as open or closed based on their dynamics, rather than geometry, is a more meaningful approach to comparing reefs and predicting their dynamical response to wave and tidal forcing.more » « less
-
{"Abstract":["As described in the methods section of “Direct Observation of Wave-coherent Pressure Work in the Atmospheric Boundary Layer”: Measurements were made from an open-lattice steel tower deployed in roughly 13 m water depth in Buzzards Bay, MA. Buzzards Bay is a 48 km by 12 km basin open on the SW side to Rhode Island Sound. The average depth is 11 m, with a tide range of 1 to 1.5 m, depending on the neap/spring cycles. Winds in Buzzards Bay are frequently aligned on the long-axis (from the NE or SW), and are commonly strong, particularly in the fall and winter. The tower was deployed near the center of the bay at 41.577638 N, 70.745555 W for a spring deployment lasting from April 12, 2022 to June 13th, 2022. Atmospheric measurements included three primary instrument booms that housed paired sonic anemometers (RM Young 81000RE) and high-resolution pressure sensors (Paros Scientific). The pressure sensor intakes were terminated with static pressure heads, which reduce the dynamic pressure contribution to the measured (static) pressure. The tower booms were aligned at 280 degrees such that the NE and SW winds would be unobstructed by the tower's main body. A fourth sonic anemometer (Gill R3) was extended above the tower such that it was open to all wind directions and clear of wake by the tower structure. A single point lidar (Riegl LD90-3i) was mounted to the highest boom, such that the lidar measured the water surface elevation underneath the anemometer and pressure sensors to within a few centimeters horizontally. All instruments were time synchronized with a custom "miniNode" flux logger, that aggregated the data streams from each instrument. Additional atmospheric and wave measurements on the tower included short-wave and long-wave radiometers (Kipp & Zonen), two RH/T sensors (Vaisala), and a standard lower-resolution barometer (Setra)."]}more » « less
An official website of the United States government
