skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: From Nano to Micro: Evolution of Magnetic Domain Structures in Multidomain Magnetite
Abstract Reliability of magnetic recordings of the ancient magnetic field is strongly dependent on the magnetic mineralogy of natural samples. Theoretical estimates of long‐term stability of remanence were restricted to single‐domain (SD) states, but micromagnetic models have recently demonstrated that the so‐called single‐vortex (SV) domain structure can have even higher stability that SD grains. In larger grains (10 μm in magnetite) the multidomain (MD) state dominates, so that large uniform magnetic domains are separated by narrow domain walls. In this paper we use a parallelized micromagnetic finite element model to provide resolutions of many millions of elements allowing us, for the first time, to examine the evolution of magnetic structure from a uniform state, through the SV state up to the development of the domain walls indicative of MD states. For a cuboctahedral grain of magnetite, we identify clear domain walls in grains as small as ∼3 μm with domain wall widths equal to that expected in large MD grains; we therefore put the SV to MD transition at ∼3 μm for magnetite and expect well‐defined, and stable, SV structures to be present until at least ∼1 μm when reducing the grain size. Reducing the size further shows critical dependence on the history of domain structures, particularly with SV states that transition through a so‐called “unstable zone” leading to the recently observed hard‐aligned SV states that proceed to unwind to SD yet remain hard aligned.  more » « less
Award ID(s):
1827263 1547263
PAR ID:
10456563
Author(s) / Creator(s):
 ;  ;  ;  
Publisher / Repository:
DOI PREFIX: 10.1029
Date Published:
Journal Name:
Geochemistry, Geophysics, Geosystems
Volume:
20
Issue:
6
ISSN:
1525-2027
Page Range / eLocation ID:
p. 2907-2918
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract The minerals carrying the magnetic remanence in geological samples are commonly a solid solution series of iron‐titanium spinels known as titanomagnetites. Despite the range of possible compositions within this series, micromagnetic studies that characterize the magnetic domain structures present in these minerals have typically focused on magnetite. No studies systematically comparing the domain‐states present in titanomagnetites have been undertaken since the discovery of the single vortex (SV) structure and the advent of modern micromagnetism. The magnetic properties of the titanomagnetite series are known to vary strongly with composition, which may influence the domain states present in these minerals, and therefore the magnetic stability of the samples bearing them. We present results from micromagnetic simulations of titanomagnetite ellipsoids of varying shape and composition to find the size ranges of the single domain (SD) and SV structures. These size ranges overlap, allowing for regions where the SD and SV structures are both available. These regions are of interest as they may lead to magnetic instability and “partial thermal remanent magnetization (pTRM) tails” in paleointensity experiments. We find that although this SD + SV zone occupies a narrow range of sizes for equidimensional magnetite, it is widest for intermediate (TM30‐40) titanomagnetite compositions, and increases for both oblate and prolate particles, with some compositions and sizes having an SD + SV zone up to 100s of nm wide. Our results help to explain the prevalence of pTRM tail‐like behavior in paleointensity experiments. They also highlight regions of particles with unusual domain states to target for further investigation into the definitive mechanism behind paleointensity failure. 
    more » « less
  2. Abstract The ability of rocks to hold a reliable record of the ancient geomagnetic field depends on the structure and stability of magnetic domain‐states contained within constituent particles. In paleomagnetic studies, the Day plot is an easily constructed graph of magnetic hysteresis parameters that is frequently used to estimate the likely magnetic recording stability of samples. Often samples plot in the region of the Day plot attributed to so‐called pseudo‐single‐domain particles with little understanding of the implications for domain‐states or recording fidelity. Here we use micromagnetic models to explore the hysteresis parameters of magnetite particles with idealized prolate and oblate truncated‐octahedral geometries containing single domain (SD), single‐vortex and occasionally multi‐vortex states. We show that these domain states exhibit a well‐defined trend in the Day plot that extends from the SD region well into the multi‐domain region, all of which are likely to be stable remanence carriers. We suggest that although the interpretation of the Day plot and its variants might be subject to ambiguities, if the magnetic mineralogy is known, it can still provide some useful insights about paleomagnetic specimens' dominant domain state, average particle sizes and, consequently, their paleomagnetic stability. 
    more » « less
  3. Abstract Micromagnetic modeling allows the systematic study of the effects of particle size and shape on the first‐order reversal curve (FORC) magnetic hysteresis response for magnetite particles in the single‐domain (SD) and pseudo‐single domain (PSD) particle size range. The interpretation of FORCs, though widely used, has been highly subjective. Here, we use micromagnetics to model randomly oriented distributions of particles to allow more physically meaningful interpretations. We show that one commonly found type of PSD particle—namely the single vortex (SV) particle—has far more complex signals than SD particles, with multiple peaks and troughs in the FORC distribution, where the peaks have higher switching fields for larger SV particles. Particles in the SD to SV transition zone have the lowest switching fields. Symmetrical and prolate particles display similar behavior, with distinctive peaks forming near the vertical axis of the FORC diagram. In contrast, highly oblate particles produce “butterfly” structures, suggesting that these are potentially diagnostic of particle morphology. We also consider FORC diagrams for distributions of particle sizes and shapes and produce an online application that users can use to build their own FORC distributions. There is good agreement between the model predictions for distributions of particle sizes and shapes, and the published experimental literature. 
    more » « less
  4. Abstract Continuum polarization over the UV-to-microwave range is due to dichroic extinction (or emission) by asymmetric, aligned dust grains. Scattering can also be an important source of polarization, especially at short wavelengths. Because of both grain alignment and scattering physics, the wavelength dependence of the polarization, generally, traces the size of the aligned grains. Similarly because of the differing wavelength dependencies of dichroic extinction and scattering polarization, the two can generally be reliably separated. Ultraviolet (UV) polarimetry therefore provides a unique probe of the smallest dust grains (diameter$$< 0.09~\upmu \text{m}$$ < 0.09 μm ), their mineralogy and interaction with the environment. However, the current observational status of interstellar UV polarization is very poor with less than 30 lines of sight probed. With the modern, quantitative and well-tested, theory of interstellar grain alignment now available, we have the opportunity to advance the understanding of the interstellar medium (ISM) by executing a systematic study of the UV polarization in the ISM of the Milky Way and near-by galaxies. The Polstar mission will provide the sensitivity and observing time needed to carry out such a program (probing hundreds of stars in the Milky Way and dozens of stars in the LMC/SMC), addressing questions of dust composition as a function of size and location, radiation- and magnetic-field characteristics as well as unveiling the carrier of the 2175 Å extinction feature. In addition, using high-resolution UV line spectroscopy Polstar will search for and probe the alignment of, and polarization from, aligned atoms and ions - so called “Ground State Alignment”, a potentially powerful new probe of magnetic fields in the diffuse ISM. 
    more » « less
  5. Abstract Unmixing of remanent magnetization curves, either isothermal remanent magnetization (IRM) or backfield IRM, is widely used in rock magnetic and environmental magnetic studies to discriminate between magnetic coercivity components of different origins. However, the wide range of physical properties of natural magnetic particles gives rise to an ambiguous interpretation of these components. To reduce this ambiguity and provide a straightforward interpretation of coercivity components in terms of domain state, interactions, and constituent magnetic phases, we combined backfield IRM unmixing with unmixing of nonlinear Preisach maps for two typical mid‐latitude northern hemisphere loess‐paleosol sequences. Both backfield IRM and nonlinear Preisach maps unmixing are based on the same non‐parametric algorithm, and provide similar endmembers (EMs) in the two sections studied. The first EM (EM1) has a low median coercivity (∼21 mT) and is a non‐interacting single domain (SD) magnetite/maghemite of pedogenic origin. The second EM (EM2) has a moderate median coercivity (∼60 mT) and is a mixture of pseudo‐single domain/multidomain, SD magnetite/maghemite and non‐interacting SD hematite, all of eolian origin. The same EM1 found in both sections suggests that this component's grain size and coercivity are independent of pedogenesis intensity. The same EM2 indicates that a similar magnetic population is being transported and deposited, irrespective of the dust source area and loess granulometry. The approach outlined here provides strong evidence that non‐parametric backfield IRM unmixing isolates physically realistic EMs. Unmixing nonlinear Preisach maps elucidates these EMs in terms of domain states and their constituent magnetic phases. 
    more » « less