skip to main content


Title: GmMAX2–D14 and –KAI interaction‐mediated SL and KAR signaling play essential roles in soybean root nodulation
Summary

Despite of important functions of strigolactones (SLs) and karrikins (KARs) in plant development, plant–parasite and plant–fungi interactions, their roles in soybean–rhizobia interaction remain elusive. SL/KAR signaling genesGmMAX2a, GmD14s,andGmKAIsare activated by rhizobia infection. GmMAX2a restoredatmax2root hair defects and soybean root hairs were changed inGmMAX2aoverexpression (GmMAX2aOE) or knockdown (GmMAX2aKD) mutants.GmMAX2aKDgave fewer, whereasGmMAX2aOEproduced more nodules than GUS hairy roots. Mutation ofGmMAX2ain itsKDorOEtransgenic hairy roots affected the rhizobia infection‐induced increases in early nodulation gene expression. Both mutant hairy roots also displayed the altered auxin, jasmonate and abscisic acid levels, as further verified by transcriptomic analyses of their synthetic genes. Overexpression of an auxin synthetic geneGmYUC2aalso affected SL and KAR signaling genes. GmMAX2a physically interacted with SL/KAR receptors GmD14s, GmKAIs, and GmD14Ls with different binding affinities, depending on variations in the critical amino acids, forming active D14/KAI‐SCFMAX2complexes. The knockdown mutant roots of the nodule‐specifically expressingGmKAIs andGmD14Ls gave fewer nodules, with altered expression of several early nodulation genes. The expression levels ofGmKAIs, andGmD14Ls were markedly changed inGmMAX2amutant roots, so did their target repressor genesGmD53s andGmSMAX1s. Thus, SL and KAR signaling were involved in soybean–rhizobia interaction and nodulation partly through interactions with hormones, and this may explain the different effects of MXA2 orthologs on legume determinate and indeterminate nodulation. The study provides fresh insights into the roles of GmMAX2‐mediated SL/KAR signaling in soybean root hair and nodule formation.

 
more » « less
PAR ID:
10456572
Author(s) / Creator(s):
 ;  ;  ;  ;  ;  ;  ;  ;  
Publisher / Repository:
Wiley-Blackwell
Date Published:
Journal Name:
The Plant Journal
Volume:
101
Issue:
2
ISSN:
0960-7412
Page Range / eLocation ID:
p. 334-351
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Nodule organogenesis in legumes is regulated temporally and spatially through gene networks. Genome-wide transcriptome, proteomic, and metabolomic analyses have been used previously to define the functional role of various plant genes in the nodulation process. However, while significant progress has been made, most of these studies have suffered from tissue dilution since only a few cells/root regions respond to rhizobial infection, with much of the root non-responsive. To partially overcome this issue, we adopted translating ribosome affinity purification (TRAP) to specifically monitor the response of the root cortex to rhizobial inoculation using a cortex-specific promoter. While previous studies have largely focused on the plant response within the root epidermis (e.g., root hairs) or within developing nodules, much less is known about the early responses within the root cortex, such as in relation to the development of the nodule primordium or growth of the infection thread. We focused on identifying genes specifically regulated during early nodule organogenesis using roots inoculated with Bradyrhizobium japonicum . A number of novel nodulation gene candidates were discovered, as well as soybean orthologs of nodulation genes previously reported in other legumes. The differential cortex expression of several genes was confirmed using a promoter-GUS analysis, and RNAi was used to investigate gene function. Notably, a number of differentially regulated genes involved in phytohormone signaling, including auxin, cytokinin, and gibberellic acid (GA), were also discovered, providing deep insight into phytohormone signaling during early nodule development. 
    more » « less
  2. Nod factors secreted by nitrogen-fixing rhizobia are lipo-chitooligosaccharidic signals required for establishment of the nodule symbiosis with legumes. InMedicago truncatula, the Nod factor hydrolase 1 (MtNFH1) was found to cleave Nod factors ofSinorhizobium meliloti. Here, we report that the class V chitinase MtCHIT5b ofM. truncatulaexpressed inEscherichia colican release lipodisaccharides from Nod factors. Analysis ofM. truncatulamutant plants indicated that MtCHIT5b, together with MtNFH1, degradesS. melilotiNod factors in the rhizosphere.MtCHIT5bexpression was induced by treatment of roots with purified Nod factors or inoculation with rhizobia. MtCHIT5b with a fluorescent tag was detected in the infection pocket of root hairs. Nodulation of aMtCHIT5bknockout mutant was not significantly altered whereas overexpression ofMtCHIT5bresulted in fewer nodules. Reduced nodulation was observed whenMtCHIT5bandMtNFH1were simultaneously silenced in RNA interference experiments. Overall, this study shows that nodule formation ofM. truncatulais regulated by a second Nod factor cleaving hydrolase in addition to MtNFH1.

     
    more » « less
  3. The unique evolutionary adaptation of legumes for nitrogen-fixing symbiosis leading to nodulation is tightly regulated by the host plant. The autoregulation of nodulation (AON) pathway negatively regulates the number of nodules formed in response to the carbon/nitrogen metabolic status of the shoot and root by long-distance signaling to and from the shoot and root. Central to AON signaling in the shoots ofMedicago truncatulais SUNN, a leucine-rich repeat receptor-like kinase with high sequence similarity with CLAVATA1 (CLV1), part of a class of receptors inArabidopsisinvolved in regulating stem cell populations in the root and shoot. This class of receptors inArabidopsisincludes the BARELY ANY MERISTEM family, which, like CLV1, binds to CLE peptides and interacts with CLV1 to regulate meristem development.M. truncatulacontains five members of theBAMfamily, but onlyMtBAM1andMtBAM2are highly expressed in the nodules 48 hours after inoculation. Plants carry mutations in individualMtBAMs, and several doubleBAMmutant combinations all displayed wild-type nodule number phenotypes. However,Mtbam2suppressed thesunn-5hypernodulation phenotype and partially rescued the short root length phenotype ofsunn-5 when present in asunn-5background. Grafting determined thatbam2suppresses supernodulation from the roots, regardless of theSUNNstatus of the root. Overexpression ofMtBAM2in wild-type plants increases nodule numbers, while overexpression ofMtBAM2in somesunnmutants rescues the hypernodulation phenotype, but not the hypernodulation phenotypes of AON mutantrdn1-2orcrn. Relative expression measurements of the nodule transcription factor MtWOX5 downstream of the putativebam2 sunn-5complex revealed disruption of meristem signaling; while bothbam2andbam2 sunn-5influenceMtWOX5expression, the expression changes are in different directions. We propose a genetic model wherein the specific root interactions of BAM2/SUNN are critical for signaling in nodule meristem cell homeostasis inM. truncatula.

     
    more » « less
  4. SUMMARY

    The conservation of GOLVEN (GLV)/ROOT MERISTEM GROWTH FACTOR (RGF) peptide encoding genes across plant genomes capable of forming roots or root‐like structures underscores their potential significance in the terrestrial adaptation of plants. This study investigates the function and role of GOLVEN peptide‐coding genes inMedicago truncatula. Five out of fifteen GLV/RGF genes were notably upregulated during nodule organogenesis and were differentially responsive to nitrogen deficiency and auxin treatment. Specifically, the expression ofMtGLV9andMtGLV10at nodule initiation sites was contingent upon the NODULE INCEPTION transcription factor. Overexpression of these five nodule‐induced GLV genes in hairy roots ofM. truncatulaand application of their synthetic peptide analogues led to a decrease in nodule count by 25–50%. Uniquely, the GOLVEN10 peptide altered the positioning of the first formed lateral root and nodule on the primary root axis, an observation we term ‘noduletaxis’; this decreased the length of the lateral organ formation zone on roots. Histological section of roots treated with synthetic GOLVEN10 peptide revealed an increased cell number within the root cortical cell layers without a corresponding increase in cell length, leading to an elongation of the root likely introducing a spatiotemporal delay in organ formation. At the transcription level, the GOLVEN10 peptide suppressed expression of microtubule‐related genes and exerted its effects by changing expression of a large subset of Auxin responsive genes. These findings advance our understanding of the molecular mechanisms by which GOLVEN peptides modulate root morphology, nodule ontogeny, and interactions with key transcriptional pathways.

     
    more » « less
  5. Abstract

    The symbiotic relationship between soybean [Glycine maxL. (Merr.)] roots and bacteria (Bradyrhizobium japonicum) lead to the development of nodules, important legume root structures where atmospheric nitrogen (N2) is fixed into bio‐available ammonia (NH3) for plant growth and development. With the recent development of the Soybean Nodule Acquisition Pipeline (SNAP), nodules can more easily be quantified and evaluated for genetic diversity and growth patterns across unique soybean root system architectures. We explored six diverse soybean genotypes across three field year combinations in three early vegetative stages of development and report the unique relationships between soybean nodules in the taproot and non‐taproot growth zones of diverse root system architectures of these genotypes. We found unique growth patterns in the nodules of taproots showing genotypic differences in how nodules grew in count, size, and total nodule area per genotype compared to non‐taproot nodules. We propose that nodulation should be defined as a function of both nodule count and individual nodule area resulting in a total nodule area per root or growth regions of the root. We also report on the relationships between the nodules and total nitrogen in the seed at maturity, finding a strong correlation between the taproot nodules and final seed nitrogen at maturity. The applications of these findings could lead to an enhanced understanding of the plant‐Bradyrhizobiumrelationship and exploring these relationships could lead to leveraging greater nitrogen use efficiency and nodulation carbon to nitrogen production efficiency across the soybean germplasm.

     
    more » « less