skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Risk of predation on offspring reduces parental provisioning, but not flight performance or survival across early life stages
Abstract Developmental responses can help young animals reduce predation risk but can also yield costs to performance and survival in subsequent life stages with major implications for lifetime fitness. Compensatory mechanisms may evolve to offset such costs, but evidence from natural systems is largely lacking.In songbirds, increased nest predation risk should favour reduced provisioning, but also young that fledge (leave their nest) at an earlier age. Both responses can result in fledglings with shorter wings, reduced mobility and decreased survival. Young may compensate for shorter wings developmentally by reallocating resources towards feather development or behaviourally by adjusting flight kinematics or habitat use. However, underfed young may lack the capacity to express these phenotypes due to insufficient resources or an inability to adjust allocation of resources.Using predation risk experiments and 29 years of observational field data, we test whether increased nest predation risk reduces flight performance and survival during the fledgling stage and explore potential mechanisms that might underlie these effects. We show that young from high‐risk nests did not leave the nest earlier on average, but wing growth was slower likely due to observed reductions in parental feeding rates. Wings were shorter in high‐risk nests when fledglings left the nest early. Yet, fledglings from high‐risk nests showed improved flight performance for a given wing length such that flight performance at fledging did not differ between young from high‐risk and low‐risk nests. Young from high‐risk nests may have offset the costs of shorter wings on flight performance by accelerating the emergence of flight feathers from their sheaths to reduce wing porosity, though evidence for this mechanism was mixed. Fledglings from high‐risk nests also selected habitat with denser woody vegetation compared with young from low‐risk nests.Together, these developmental and behavioural responses seem to mitigate the expected effects of increased nest predation risk on fledgling survival. Ultimately, our results show that offspring predation risk can affect parental provisioning and offspring morphology without major implications for performance and survival in subsequent life stages. A freePlain Language Summarycan be found within the Supporting Information of this article.  more » « less
Award ID(s):
1656120
PAR ID:
10456603
Author(s) / Creator(s):
 ;  ;  ;  ;
Publisher / Repository:
Wiley-Blackwell
Date Published:
Journal Name:
Functional Ecology
Volume:
34
Issue:
10
ISSN:
0269-8463
Page Range / eLocation ID:
p. 2147-2157
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract Offspring mortality varies dramatically among species with critical demographic and evolutionary ramifications, yet the causes of this variation remain unclear. Nests are widely used for breeding across taxa and thought to influence offspring mortality risk. Traditionally, more complex, enclosed nest structures are thought to reduce offspring predation by reducing the visibility of nest contents and muffling offspring sounds compared to open nests. Direct tests of the functional bases for nest structure influence on predation risk are lacking.We used experiments and 10 years of observational data to examine how nest structure influences nest predation risk in a diverse community of tropical songbirds. First, we examined how nest size was related to nest structure and nest predation rates across species. Second, we assessed how nest structure influences the detectability of nestling begging calls both in field and in laboratory settings. Finally, we examined how the acoustic properties of different nest structures influence nest predation risk. Specifically, we experimentally broadcast begging calls from open and enclosed nests to determine how auditory cues and nest structure interact to affect predation on plasticine and quail eggs. We also tested whether nest structure was associated with differences in nest predation rates between the incubation (no begging cues) and nestling (begging cues) stages.We found that enclosed nests are larger than open nests after accounting for adult size, and larger nests had increased predation rates. Moreover, enclosed nests did not consistently alter nestling begging calls in ways that reduce the likelihood of predation compared to open nests. Indeed, begging cues increased predation rates for enclosed but not open‐cup nests in our playback experiment, and nest predation rates showed greater increases after hatching in enclosed than open‐cup nests.Ultimately, enclosed nests do not necessarily provide greater predation benefits than open nests in contrast to long‐standing theory. A freeplain language summarycan be found within the Supporting Information of this article. 
    more » « less
  2. Abstract Parents faced with a predator must choose between their own safety versus taking care of their offspring. Each choice can have fitness costs. Life‐history theory predicts that longer‐lived species should be less willing than shorter‐lived species to return to care for their offspring after a predator disturbance because they have more opportunities to reproduce in the future. We increased adult predation risk during incubation for 40 bird species in north temperate, tropical, and south temperate latitudes. We found that species with higher adult survival probabilities were more cautious, waiting longer before returning to the nest to provide care. Contrary to other studies, we also found that parents were more risk averse and waited longer to return in smaller than larger species, likely reflecting greater vulnerability of smaller species. Ultimately, the relative risk a predator poses to a species and the probability of future reproduction predict parental risk taking across the world. 
    more » « less
  3. Abstract Co‐parasitism is ubiquitous and has important consequences for the ecology and evolution of wild host populations. Studies of parasite co‐infections remain limited in scope, with few experimental tests of the fitness consequences of multiple parasites, especially in natural populations.We measured the separate and combined effects ofPhilornis seguyinest flies and shiny cowbirdsMolothrus bonariensison the fitness of a shared host, the chalk‐browed mockingbird (Mimus saturninus) in Argentina.Using a two‐factor experimental approach, we manipulated the presence of nest flies and cowbirds in mockingbird nests and assessed their effects on mockingbird haemoglobin levels, begging and provisioning rates, body size, and fledging success. We also monitored rates of nest predation in relation to parasitism by flies and cowbirds.Nest flies reduced the haemoglobin concentration, body size, and fledging success of mockingbirds, likely because mockingbirds did not compensate for parasitism by begging more or feeding their nestlings more. Cowbirds also reduced the fledging success of mockingbirds, even though they had no detectable effect on haemoglobin or body size. Nests with cowbirds, which beg more than mockingbirds, attracted more nest predators. There was no significant interaction between the effects of flies and cowbirds on any component of mockingbird fitness. The combined effects of nest flies and cowbirds were strictly additive.In summary, we show that nest flies and cowbirds both reduce host fitness, but do not have interactive effects in co‐parasitized nests. Our results further suggest that predators exacerbate the effects of nest flies and cowbirds on their hosts. Our study shows that the fitness consequences of co‐parasitism are complex, especially in the context of community‐level interactions. 
    more » « less
  4. ABSTRACT Biparental care is common in socially monogamous avian species, but both partners may seek extra‐pair copulations (EPCs). The relative costs and benefits of EPCs between the sexes are likely complex, yet the implications of EPCs for parental care behavior have been examined predominantly in males. Not only could females benefit from EPCs, but females would have additional information about the likelihood of extra‐pair young (EPY) in their nest not available to their partners, which likely influences female behavior. We examined how the presence and abundance of EPY in a nest affect parental behavior in a socially monogamous songbird, song sparrows (Melospiza melodia). We predicted that females who mated outside the social pair would invest more in a clutch with a higher probability of EPY. We monitored nest visitation rates by male and female social partners as a proxy for parental investment and quantified extra‐pair paternity in 45 nests. Maternal visitation rates were higher in nests with EPY compared to nests without, while males did not adjust their investment in relation to the presence of EPY. These findings support our prediction that females who participated in EPC would invest more in the resulting offspring. 
    more » « less
  5. Abstract The amount of care parents provide to the offspring is complicated by an evolutionary conflict of interest (‘sexual conflict’) between the two parents. Recent theoretical models suggest that pair coordination of the provisioning may reduce this conflict and increase parent and offspring fitness. Despite empirical studies showing that pair coordination is common in avian species, it remains unclear how environmental and ecological conditions might promote or limit the ability of parents to coordinate care. We compared the level of pair coordination, measured as alternation and synchrony of the nest visits, of house wrensTroglodytes aedonpairs breeding in a rural (10 nests) and a suburban (9 nests) site and investigated how differences in parental behaviours were related to habitat composition, prey abundance and how they ultimately related to reproductive success. We found that parents alternated and synchronized their nest visits more in the rural site compared to the suburban one. The suburban site is characterized by a more fragmented habitat with more coniferous trees and less caterpillar availability. Offspring from the rural site were heavier at fledging than at the suburban site. Taken together, these results suggest that environmental conditions play an important role on the emergence of coordinated parental care and that considering environmental variables is pivotal to assess the fitness consequences of parental strategies. 
    more » « less